Hurwitz theory of elliptic orbifolds, I
Geometry & topology, Tome 25 (2021) no. 1, pp. 229-274.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

An elliptic orbifold is the quotient of an elliptic curve by a finite group. In 2001, Eskin and Okounkov proved that generating functions for the number of branched covers of an elliptic curve with specified ramification are quasimodular forms for SL2(). In 2006, they generalized this theorem to branched covers of the quotient of an elliptic curve by ± 1, proving quasimodularity for Γ0(2). We generalize their work to the quotient of an elliptic curve by ζN for N = 3, 4, 6, proving quasimodularity for Γ(N), and extend their work in the case N = 2.

It follows that certain generating functions of hexagon, square and triangle tilings of compact surfaces are quasimodular forms. These tilings enumerate lattice points in moduli spaces of flat surfaces. We analyze the asymptotics as the number of tiles goes to infinity, providing an algorithm to compute the Masur–Veech volumes of strata of cubic, quartic, and sextic differentials. We conclude a generalization of the Kontsevich–Zorich conjecture: these volumes are polynomial in π.

DOI : 10.2140/gt.2021.25.229
Classification : 05B45, 14H30, 14H52, 14K25, 17B69
Keywords: Hurwitz theory, elliptic orbifold, higher differentials, Masur–Veech volume, tilings, enumeration

Engel, Philip 1

1 Department of Mathematics, Harvard University, Cambridge, MA, United States, Department of Mathematics, University of Georgia, Athens, GA, United States
@article{GT_2021_25_1_a3,
     author = {Engel, Philip},
     title = {Hurwitz theory of elliptic orbifolds, {I}},
     journal = {Geometry & topology},
     pages = {229--274},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2021},
     doi = {10.2140/gt.2021.25.229},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.229/}
}
TY  - JOUR
AU  - Engel, Philip
TI  - Hurwitz theory of elliptic orbifolds, I
JO  - Geometry & topology
PY  - 2021
SP  - 229
EP  - 274
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.229/
DO  - 10.2140/gt.2021.25.229
ID  - GT_2021_25_1_a3
ER  - 
%0 Journal Article
%A Engel, Philip
%T Hurwitz theory of elliptic orbifolds, I
%J Geometry & topology
%D 2021
%P 229-274
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.229/
%R 10.2140/gt.2021.25.229
%F GT_2021_25_1_a3
Engel, Philip. Hurwitz theory of elliptic orbifolds, I. Geometry & topology, Tome 25 (2021) no. 1, pp. 229-274. doi : 10.2140/gt.2021.25.229. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.229/

[1] J S Athreya, A Eskin, A Zorich, Right-angled billiards and volumes of moduli spaces of quadratic differentials on CP1, Ann. Sci. École Norm. Sup. 49 (2016) 1311 | DOI

[2] M Bainbridge, D Chen, Q Gendron, S Grushevsky, M Möller, Strata of k–differentials, Algebr. Geom. 6 (2019) 196 | DOI

[3] S Bloch, A Okounkov, The character of the infinite wedge representation, Adv. Math. 149 (2000) 1 | DOI

[4] W Burnside, Theory of groups of finite order, Cambridge Univ. Press (1911)

[5] D Chen, M Möller, D Zagier, Quasimodularity and large genus limits of Siegel–Veech constants, J. Amer. Math. Soc. 31 (2018) 1059 | DOI

[6] F Diamond, J Shurman, A first course in modular forms, 228, Springer (2005) | DOI

[7] R Dijkgraaf, Mirror symmetry and elliptic curves, from: "The moduli space of curves" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 149 | DOI

[8] P Engel, Hurwitz theory of elliptic orbifolds, II, preprint (2018)

[9] P Engel, P Smillie, The number of convex tilings of the sphere by triangles, squares, or hexagons, Geom. Topol. 22 (2018) 2839 | DOI

[10] A Eskin, A Okounkov, Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials, Invent. Math. 145 (2001) 59 | DOI

[11] A Eskin, A Okounkov, Pillowcases and quasimodular forms, from: "Algebraic geometry and number theory" (editor V Ginzburg), Progr. Math. 253, Birkhäuser (2006) 1 | DOI

[12] S Fomin, N Lulov, On the number of rim hook tableaux, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. 223 (1995) 219 | DOI

[13] G Frobenius, Über die Charaktere der symmetrischen Gruppe, Sitz. König. Akad. Wissen. Berlin (1900) 516

[14] E Goujard, Volumes of strata of moduli spaces of quadratic differentials: getting explicit values, Ann. Inst. Fourier (Grenoble) 66 (2016) 2203 | DOI

[15] A Hurwitz, Ueber Riemannsche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891) 1 | DOI

[16] V G Kac, Infinite-dimensional Lie algebras, Cambridge Univ. Press (1990) | DOI

[17] S Kerov, G Olshanski, Polynomial functions on the set of Young diagrams, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994) 121

[18] M Krawitz, Y Shen, Landau–Ginzburg/Calabi–Yau correspondence of all genera for elliptic orbifold P1, preprint (2011)

[19] H Masur, Interval exchange transformations and measured foliations, Ann. of Math. 115 (1982) 169 | DOI

[20] C T Mcmullen, The Gauss–Bonnet theorem for cone manifolds and volumes of moduli spaces, Amer. J. Math. 139 (2017) 261 | DOI

[21] T Milanov, Y Ruan, Gromov–Witten theory of elliptic orbifold P1 and quasi-modular forms, preprint (2011)

[22] A Milas, Formal differential operators, vertex operator algebras and zeta-values, II, J. Pure Appl. Algebra 183 (2003) 191 | DOI

[23] F D Murnaghan, The characters of the symmetric group, Amer. J. Math. 59 (1937) 739 | DOI

[24] T Nakayama, On some modular properties of irreducible representations of a symmetric group, I, Jpn. J. Math. 17 (1940) 165 | DOI

[25] D M Nguyen, Volume form on moduli spaces of d–differentials, preprint (2019)

[26] G Oberdieck, A Pixton, Holomorphic anomaly equations and the Igusa cusp form conjecture, Invent. Math. 213 (2018) 507 | DOI

[27] A Okounkov, G Olshansky, Shifted Schur functions, Algebra i Analiz 9 (1997) 73

[28] A Okounkov, R Pandharipande, Gromov–Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. 163 (2006) 517 | DOI

[29] R Ríos-Zertuche, The pillowcase distribution and near-involutions, Electron. J. Probab. 19 (2014) | DOI

[30] R Ríos-Zertuche, An introduction to the half-infinite wedge, from: "Mexican mathematicians abroad: recent contributions" (editors N Bárcenas, F Galaz-García, M Moreno Rocha), Contemp. Math. 657, Amer. Math. Soc. (2016) 197 | DOI

[31] I Schur, Neue Begründung der Theorie der Gruppencharaktere, Sitz. König. Akad. Wissen. Berlin (1904) 406

[32] W A Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. 115 (1982) 201 | DOI

[33] Y Yang, Transformation formulas for generalized Dedekind eta functions, Bull. Lond. Math. Soc. 36 (2004) 671 | DOI

Cité par Sources :