Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that coinvariants of modules over vertex operator algebras give rise to quasicoherent sheaves on moduli of stable pointed curves. These generalize Verlinde bundles or vector bundles of conformal blocks defined using affine Lie algebras studied first by Tsuchiya, Kanie, Ueno and Yamada, and extend work of others. The sheaves carry a twisted logarithmic –module structure, and hence support a projectively flat connection. We identify the logarithmic Atiyah algebra acting on them, generalizing work of Tsuchimoto for affine Lie algebras.
Damiolini, Chiara 1 ; Gibney, Angela 2 ; Tarasca, Nicola 3
@article{GT_2021_25_5_a2, author = {Damiolini, Chiara and Gibney, Angela and Tarasca, Nicola}, title = {Conformal blocks from vertex algebras and their connections on {\ensuremath{\mathscr{M}}g,n}}, journal = {Geometry & topology}, pages = {2235--2286}, publisher = {mathdoc}, volume = {25}, number = {5}, year = {2021}, doi = {10.2140/gt.2021.25.2235}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2235/} }
TY - JOUR AU - Damiolini, Chiara AU - Gibney, Angela AU - Tarasca, Nicola TI - Conformal blocks from vertex algebras and their connections on ℳg,n JO - Geometry & topology PY - 2021 SP - 2235 EP - 2286 VL - 25 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2235/ DO - 10.2140/gt.2021.25.2235 ID - GT_2021_25_5_a2 ER -
%0 Journal Article %A Damiolini, Chiara %A Gibney, Angela %A Tarasca, Nicola %T Conformal blocks from vertex algebras and their connections on ℳg,n %J Geometry & topology %D 2021 %P 2235-2286 %V 25 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2235/ %R 10.2140/gt.2021.25.2235 %F GT_2021_25_5_a2
Damiolini, Chiara; Gibney, Angela; Tarasca, Nicola. Conformal blocks from vertex algebras and their connections on ℳg,n. Geometry & topology, Tome 25 (2021) no. 5, pp. 2235-2286. doi : 10.2140/gt.2021.25.2235. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2235/
[1] Rationality of the vertex operator algebra V L+ for a positive definite even lattice L, Math. Z. 249 (2005) 455 | DOI
,[2] C2–cofiniteness of the 2–cycle permutation orbifold models of minimal Virasoro vertex operator algebras, Comm. Math. Phys. 303 (2011) 825 | DOI
,[3] C2–cofiniteness of 2–cyclic permutation orbifold models, Comm. Math. Phys. 317 (2013) 425 | DOI
,[4] Rationality, regularity, and C2–cofiniteness, Trans. Amer. Math. Soc. 356 (2004) 3391 | DOI
, , ,[5] Finiteness of conformal blocks over compact Riemann surfaces, Osaka J. Math. 40 (2003) 375
, ,[6] On the triplet vertex algebra W(p), Adv. Math. 217 (2008) 2664 | DOI
, ,[7] C2–cofiniteness of cyclic-orbifold vertex operator superalgebras, Algebra Colloq. 24 (2017) 315 | DOI
,[8] Higher-level sl2 conformal blocks divisors on M0,n, Proc. Edinb. Math. Soc. 57 (2014) 7 | DOI
, , ,[9] A remark on the C2–cofiniteness condition on vertex algebras, Math. Z. 270 (2012) 559 | DOI
,[10] Associated varieties of modules over Kac–Moody algebras and C2–cofiniteness of W–algebras, Int. Math. Res. Not. 2015 (2015) 11605 | DOI
,[11] Rationality of W–algebras : principal nilpotent cases, Ann. of Math. 182 (2015) 565 | DOI
,[12] sln level 1 conformal blocks divisors on M0,n, Int. Math. Res. Not. 2012 (2012) 1634 | DOI
, , , ,[13] Moduli spaces of curves and representation theory, Comm. Math. Phys. 117 (1988) 1 | DOI
, , , ,[14] Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957) 181 | DOI
,[15] Lectures on tensor categories and modular functors, 21, Amer. Math. Soc. (2001) | DOI
, ,[16] Conformal blocks and generalized theta functions, Comm. Math. Phys. 164 (1994) 385 | DOI
, ,[17] The Picard group of the moduli of G–bundles on a curve, Compos. Math. 112 (1998) 183 | DOI
, , ,[18] A proof of Jantzen conjectures, from: "I M Gelfand seminar, I" (editors S Gelfand, S Gindikin), Adv. Soviet Math. 16, Amer. Math. Soc. (1993) 1
, ,[19] Chiral algebras, 51, Amer. Math. Soc. (2004) | DOI
, ,[20] Introduction to algebraic field theory on curves, unpublished manuscript (1991)
, , ,[21] Flat projective connections, preprint (1991)
, ,[22] Determinant bundles and Virasoro algebras, Comm. Math. Phys. 118 (1988) 651 | DOI
, ,[23] Unitarity of the KZ/Hitchin connection on conformal blocks in genus 0 for arbitrary Lie algebras, J. Math. Pures Appl. 98 (2012) 367 | DOI
,[24] Vertex algebras, Kac–Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A. 83 (1986) 3068 | DOI
,[25] Vertex algebras and Teichmüller modular forms, preprint (2019)
,[26] On global generation of vector bundles on the moduli space of curves from representations of vertex operator algebras, preprint (2021)
, ,[27] On factorization and vector bundles of conformal blocks from vertex algebras, preprint (2019)
, , ,[28] Vertex algebras of CohFT-type, preprint (2019)
, , ,[29] Generalized vertex algebras and relative vertex operators, 112, Birkhäuser (1993) | DOI
, ,[30] Regularity of rational vertex operator algebras, Adv. Math. 132 (1997) 148 | DOI
, , ,[31] Twisted representations of vertex operator algebras, Math. Ann. 310 (1998) 571 | DOI
, , ,[32] Modular-invariance of trace functions in orbifold theory and generalized moonshine, Comm. Math. Phys. 214 (2000) 1 | DOI
, , ,[33] Chern classes of conformal blocks, from: "Compact moduli spaces and vector bundles" (editors V Alexeev, A Gibney, E Izadi, J Kollár, E Looijenga), Contemp. Math. 564, Amer. Math. Soc. (2012) 145 | DOI
,[34] Scalar product of current blocks in WZW theory, Phys. Lett. B 260 (1991) 101 | DOI
, , ,[35] Stable G–bundles and projective connections, J. Algebraic Geom. 2 (1993) 507
,[36] A proof for the Verlinde formula, J. Algebraic Geom. 3 (1994) 347
,[37] The KZB equations on Riemann surfaces, from: "Symétries quantiques" (editors A Connes, K Gawedzki, J Zinn-Justin), North-Holland (1998) 687
,[38] Vertex algebras and algebraic curves, 88, Amer. Math. Soc. (2004) | DOI
, ,[39] Characters and fusion rules for W–algebras via quantized Drinfeld–Sokolov reduction, Comm. Math. Phys. 147 (1992) 295 | DOI
, , ,[40] On axiomatic approaches to vertex operator algebras and modules, 494, Amer. Math. Soc. (1993) | DOI
, , ,[41] A natural representation of the Fischer–Griess Monster with the modular function J as character, Proc. Nat. Acad. Sci. U.S.A. 81 (1984) 3256 | DOI
, , ,[42] Vertex operator algebras and the Monster, 134, Academic (1988)
, , ,[43] Rationality, quasirationality and finite W–algebras, Comm. Math. Phys. 238 (2003) 305 | DOI
, ,[44] Lectures on conformal field theory, from: "Quantum fields and strings: a course for mathematicians, II" (editors P Deligne, P Etingof, D S Freed, L C Jeffrey, D Kazhdan, J W Morgan, D R Morrison, E Witten), Amer. Math. Soc. (1999) 727 | DOI
,[45] SU(2) Chern–Simons theory at genus zero, Comm. Math. Phys. 135 (1991) 531 | DOI
, ,[46] The cone of type A, level 1, conformal blocks divisors, Adv. Math. 231 (2012) 798 | DOI
, ,[47] Veronese quotient models of M0,n and conformal blocks, Michigan Math. J. 62 (2013) 721 | DOI
, , , ,[48] Flat connections and geometric quantization, Comm. Math. Phys. 131 (1990) 347 | DOI
,[49] Conformal designs based on vertex operator algebras, Adv. Math. 217 (2008) 2301 | DOI
,[50] Two-dimensional conformal geometry and vertex operator algebras, 148, Birkhäuser (1997) | DOI
,[51] Vertex operator algebras, the Verlinde conjecture, and modular tensor categories, Proc. Nat. Acad. Sci. U.S.A. 102 (2005) 5352 | DOI
,[52] C2–cofiniteness of the vertex algebra V L+ when L is a nondegenerate even lattice, Comm. Algebra 38 (2010) 4404 | DOI
, ,[53] Differential geometry of complex vector bundles, 15, Princeton Univ. Press (1987) | DOI
,[54] The Virasoro algebra and Teichmüller spaces, Funktsional. Anal. i Prilozhen. 21 (1987) 78
,[55] Infinite Grassmannians and moduli spaces of G–bundles, Math. Ann. 300 (1994) 41 | DOI
, , ,[56] Hitchin’s and WZW connections are the same, J. Differential Geom. 49 (1998) 547 | DOI
,[57] Introduction to vertex operator algebras and their representations, 227, Birkhäuser (2004) | DOI
, ,[58] Local systems of vertex operators, vertex superalgebras and modules, J. Pure Appl. Algebra 109 (1996) 143 | DOI
,[59] From WZW models to modular functors, from: "Handbook of moduli, II" (editors G Farkas, I Morrison), Adv. Lect. Math. 25, International (2013) 427
,[60] The first Chern class of the Verlinde bundles, from: "String–Math 2012" (editors R Donagi, S Katz, A Klemm, D R Morrison), Proc. Sympos. Pure Math. 90, Amer. Math. Soc. (2015) 87 | DOI
, , ,[61] The Chern character of the Verlinde bundle over Mg,n, J. Reine Angew. Math. 732 (2017) 147 | DOI
, , , , ,[62] Modular invariance of vertex operator algebras satisfying C2–cofiniteness, Duke Math. J. 122 (2004) 51 | DOI
,[63] A Z3–orbifold theory of lattice vertex operator algebra and Z3–orbifold constructions, from: "Symmetries, integrable systems and representations" (editors K Iohara, S Morier-Genoud, B Rémy), Springer Proc. Math. Stat. 40, Springer (2013) 319 | DOI
,[64] Conformal field theories associated to regular chiral vertex operator algebras, I : Theories over the projective line, Duke Math. J. 128 (2005) 393 | DOI
, ,[65] Espaces de modules de fibrés paraboliques et blocs conformes, Duke Math. J. 84 (1996) 217 | DOI
,[66] The “Harder–Narasimhan trace” and unitarity of the KZ/Hitchin connection : genus 0, Ann. of Math. 169 (2009) 1 | DOI
,[67] The definition of conformal field theory, from: "Topology, geometry and quantum field theory" (editor U Tillmann), Lond. Math. Soc. Lect. Note Ser. 308, Cambridge Univ. Press (2004) 421
,[68] La formule de Verlinde, from: "Séminaire Bourbaki, 1994/95", Astérisque 237, Soc. Math. France (1996) 87
,[69] On the coordinate-free description of the conformal blocks, J. Math. Kyoto Univ. 33 (1993) 29 | DOI
,[70] Vertex operators in the conformal field theory on P1 and monodromy representations of the braid group, Lett. Math. Phys. 13 (1987) 303 | DOI
, ,[71] Conformal field theory on universal family of stable curves with gauge symmetries, from: "Integrable systems in quantum field theory and statistical mechanics" (editors M Jimbo, T Miwa, A Tsuchiya), Adv. Stud. Pure Math. 19, Academic (1989) 459 | DOI
, , ,[72] On conformal field theory, from: "Vector bundles in algebraic geometry" (editors N J Hitchin, P E Newstead, W M Oxbury), Lond. Math. Soc. Lect. Note Ser. 208, Cambridge Univ. Press (1995) 283 | DOI
,[73] C2–cofiniteness of the vertex operator algebra V L+ when L is a rank one lattice, Comm. Algebra 32 (2004) 927 | DOI
,[74] Global vertex operators on Riemann surfaces, Comm. Math. Phys. 165 (1994) 485 | DOI
,[75] Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996) 237 | DOI
,Cité par Sources :