Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We consider noncompact ancient solutions to the mean curvature flow in () which are strictly convex, uniformly two-convex, and noncollapsed. We prove that such an ancient solution is a rotationally symmetric translating soliton.
Brendle, Simon 1 ; Choi, Kyeongsu 2
@article{GT_2021_25_5_a1, author = {Brendle, Simon and Choi, Kyeongsu}, title = {Uniqueness of convex ancient solutions to mean curvature flow in higher dimensions}, journal = {Geometry & topology}, pages = {2195--2234}, publisher = {mathdoc}, volume = {25}, number = {5}, year = {2021}, doi = {10.2140/gt.2021.25.2195}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2195/} }
TY - JOUR AU - Brendle, Simon AU - Choi, Kyeongsu TI - Uniqueness of convex ancient solutions to mean curvature flow in higher dimensions JO - Geometry & topology PY - 2021 SP - 2195 EP - 2234 VL - 25 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2195/ DO - 10.2140/gt.2021.25.2195 ID - GT_2021_25_5_a1 ER -
%0 Journal Article %A Brendle, Simon %A Choi, Kyeongsu %T Uniqueness of convex ancient solutions to mean curvature flow in higher dimensions %J Geometry & topology %D 2021 %P 2195-2234 %V 25 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2195/ %R 10.2140/gt.2021.25.2195 %F GT_2021_25_5_a1
Brendle, Simon; Choi, Kyeongsu. Uniqueness of convex ancient solutions to mean curvature flow in higher dimensions. Geometry & topology, Tome 25 (2021) no. 5, pp. 2195-2234. doi : 10.2140/gt.2021.25.2195. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2195/
[1] Unique asymptotics of ancient convex mean curvature flow solutions, J. Differential Geom. 111 (2019) 381 | DOI
, , ,[2] Uniqueness of convex ancient solutions to mean curvature flow in R3, Invent. Math. 217 (2019) 35 | DOI
, ,[3] Generic mean curvature flow, I : Generic singularities, Ann. of Math. 175 (2012) 755 | DOI
, ,[4] Regularity theory for mean curvature flow, 57, Birkhäuser (2004) | DOI
,[5] Interior estimates for hypersurfaces moving by mean curvature, Invent. Math. 105 (1991) 547 | DOI
, ,[6] Harnack estimate for the mean curvature flow, J. Differential Geom. 41 (1995) 215 | DOI
,[7] Mean curvature flow of mean convex hypersurfaces, Comm. Pure Appl. Math. 70 (2017) 511 | DOI
, ,[8] Mean curvature flow with surgery, Duke Math. J. 166 (2017) 1591 | DOI
, ,[9] Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom. 31 (1990) 285 | DOI
,[10] Mean curvature flow with surgeries of two-convex hypersurfaces, Invent. Math. 175 (2009) 137 | DOI
, ,[11] Optimal estimates for blowup rate and behavior for nonlinear heat equations, Comm. Pure Appl. Math. 51 (1998) 139 | DOI
, ,[12] Singularity profile in the mean curvature flow, Methods Appl. Anal. 16 (2009) 139 | DOI
, ,[13] Unbounded convex point sets, Amer. J. Math. 62 (1940) 165 | DOI
,[14] The size of the singular set in mean curvature flow of mean-convex sets, J. Amer. Math. Soc. 13 (2000) 665 | DOI
,[15] The nature of singularities in mean curvature flow of mean-convex sets, J. Amer. Math. Soc. 16 (2003) 123 | DOI
,Cité par Sources :