Uniqueness of convex ancient solutions to mean curvature flow in higher dimensions
Geometry & topology, Tome 25 (2021) no. 5, pp. 2195-2234.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We consider noncompact ancient solutions to the mean curvature flow in n+1 (n 3) which are strictly convex, uniformly two-convex, and noncollapsed. We prove that such an ancient solution is a rotationally symmetric translating soliton.

DOI : 10.2140/gt.2021.25.2195
Classification : 53C44
Keywords: mean curvature flow, ancient solution

Brendle, Simon 1 ; Choi, Kyeongsu 2

1 Department of Mathematics, Columbia University, New York, NY, United States
2 School of Mathematics, Korea Institute for Advanced Study, Seoul, South Korea
@article{GT_2021_25_5_a1,
     author = {Brendle, Simon and Choi, Kyeongsu},
     title = {Uniqueness of convex ancient solutions to mean curvature flow in higher dimensions},
     journal = {Geometry & topology},
     pages = {2195--2234},
     publisher = {mathdoc},
     volume = {25},
     number = {5},
     year = {2021},
     doi = {10.2140/gt.2021.25.2195},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2195/}
}
TY  - JOUR
AU  - Brendle, Simon
AU  - Choi, Kyeongsu
TI  - Uniqueness of convex ancient solutions to mean curvature flow in higher dimensions
JO  - Geometry & topology
PY  - 2021
SP  - 2195
EP  - 2234
VL  - 25
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2195/
DO  - 10.2140/gt.2021.25.2195
ID  - GT_2021_25_5_a1
ER  - 
%0 Journal Article
%A Brendle, Simon
%A Choi, Kyeongsu
%T Uniqueness of convex ancient solutions to mean curvature flow in higher dimensions
%J Geometry & topology
%D 2021
%P 2195-2234
%V 25
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2195/
%R 10.2140/gt.2021.25.2195
%F GT_2021_25_5_a1
Brendle, Simon; Choi, Kyeongsu. Uniqueness of convex ancient solutions to mean curvature flow in higher dimensions. Geometry & topology, Tome 25 (2021) no. 5, pp. 2195-2234. doi : 10.2140/gt.2021.25.2195. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2195/

[1] S Angenent, P Daskalopoulos, N Sesum, Unique asymptotics of ancient convex mean curvature flow solutions, J. Differential Geom. 111 (2019) 381 | DOI

[2] S Brendle, K Choi, Uniqueness of convex ancient solutions to mean curvature flow in R3, Invent. Math. 217 (2019) 35 | DOI

[3] T H Colding, W P Minicozzi Ii, Generic mean curvature flow, I : Generic singularities, Ann. of Math. 175 (2012) 755 | DOI

[4] K Ecker, Regularity theory for mean curvature flow, 57, Birkhäuser (2004) | DOI

[5] K Ecker, G Huisken, Interior estimates for hypersurfaces moving by mean curvature, Invent. Math. 105 (1991) 547 | DOI

[6] R S Hamilton, Harnack estimate for the mean curvature flow, J. Differential Geom. 41 (1995) 215 | DOI

[7] R Haslhofer, B Kleiner, Mean curvature flow of mean convex hypersurfaces, Comm. Pure Appl. Math. 70 (2017) 511 | DOI

[8] R Haslhofer, B Kleiner, Mean curvature flow with surgery, Duke Math. J. 166 (2017) 1591 | DOI

[9] G Huisken, Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom. 31 (1990) 285 | DOI

[10] G Huisken, C Sinestrari, Mean curvature flow with surgeries of two-convex hypersurfaces, Invent. Math. 175 (2009) 137 | DOI

[11] F Merle, H Zaag, Optimal estimates for blowup rate and behavior for nonlinear heat equations, Comm. Pure Appl. Math. 51 (1998) 139 | DOI

[12] W Sheng, X J Wang, Singularity profile in the mean curvature flow, Methods Appl. Anal. 16 (2009) 139 | DOI

[13] J J Stoker, Unbounded convex point sets, Amer. J. Math. 62 (1940) 165 | DOI

[14] B White, The size of the singular set in mean curvature flow of mean-convex sets, J. Amer. Math. Soc. 13 (2000) 665 | DOI

[15] B White, The nature of singularities in mean curvature flow of mean-convex sets, J. Amer. Math. Soc. 16 (2003) 123 | DOI

Cité par Sources :