Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We establish the rationality of simple isolated Cohen–Macaulay codimension (ICMC2) singularities in all dimensions and explicitly compute the vanishing homology of a certain class of threefolds including all the simple ones. ICMC2 singularities are determinantal and can be viewed as a natural generalization of complete intersections. The main tool for our investigations is the so-called Tjurina transformation — a special blowup construction based on the determinantal structure and often compatible with deformations.
Frühbis-Krüger, Anne 1 ; Zach, Matthias 2
@article{GT_2021_25_5_a0, author = {Fr\"uhbis-Kr\"uger, Anne and Zach, Matthias}, title = {On the vanishing topology of isolated {Cohen{\textendash}Macaulay} codimension 2 singularities}, journal = {Geometry & topology}, pages = {2167--2194}, publisher = {mathdoc}, volume = {25}, number = {5}, year = {2021}, doi = {10.2140/gt.2021.25.2167}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2167/} }
TY - JOUR AU - Frühbis-Krüger, Anne AU - Zach, Matthias TI - On the vanishing topology of isolated Cohen–Macaulay codimension 2 singularities JO - Geometry & topology PY - 2021 SP - 2167 EP - 2194 VL - 25 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2167/ DO - 10.2140/gt.2021.25.2167 ID - GT_2021_25_5_a0 ER -
%0 Journal Article %A Frühbis-Krüger, Anne %A Zach, Matthias %T On the vanishing topology of isolated Cohen–Macaulay codimension 2 singularities %J Geometry & topology %D 2021 %P 2167-2194 %V 25 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2167/ %R 10.2140/gt.2021.25.2167 %F GT_2021_25_5_a0
Frühbis-Krüger, Anne; Zach, Matthias. On the vanishing topology of isolated Cohen–Macaulay codimension 2 singularities. Geometry & topology, Tome 25 (2021) no. 5, pp. 2167-2194. doi : 10.2140/gt.2021.25.2167. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2167/
[1] Algebraic construction of Brieskorn’s resolutions, J. Algebra 29 (1974) 330 | DOI
,[2] Solvable groups, free divisors and nonisolated matrix singularities, II : Vanishing topology, Geom. Topol. 18 (2014) 911 | DOI
, ,[3] Singular: a computer algebra system for polynomial computations (2019)
, , , ,[4] Commutative algebra: with a view toward algebraic geometry, 150, Springer (1995) | DOI
,[5] Classification of simple space curve singularities, Comm. Algebra 27 (1999) 3993 | DOI
,[6] On discriminants, Tjurina modifications and the geometry of determinantal singularities, Topol. Appl. 234 (2018) 375 | DOI
,[7] Simple Cohen–Macaulay codimension 2 singularities, Comm. Algebra 38 (2010) 454 | DOI
, ,[8] Pairs of modules and determinantal isolated singularities, preprint (2014)
, ,[9] Several complex variables, IV : Algebraic aspects of complex analysis, 10, Springer (1990) | DOI
, , editors,[10] Classification des singularités isolées simples d’intersections complètes, from: "Singularities, I" (editor P Orlik), Proc. Sympos. Pure Math. 40, Amer. Math. Soc. (1983) 457 | DOI
,[11] Tjurina and Milnor numbers of matrix singularities, J. Lond. Math. Soc. 72 (2005) 205 | DOI
, ,[12] Über die Deformation isolierter Singularitäten analytischer Mengen, Invent. Math. 15 (1972) 171 | DOI
,[13] Several complex variables, VII : Sheaf-theoretical methods in complex analysis, 74, Springer (1994) | DOI
, , , editors,[14] On the topology of smoothable singularities, from: "Singularities, I" (editor P Orlik), Proc. Sympos. Pure Math. 40, Amer. Math. Soc. (1983) 535 | DOI
, ,[15] On the indices of 1–forms on determinantal singularities, Tr. Mat. Inst. Steklova 267 (2009) 119
, ,[16] Lokale topologische Eigenschaften komplexer Räume, Math. Ann. 191 (1971) 235 | DOI
,[17] Deformation theory, 257, Springer (2010) | DOI
,[18] Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18 (1964) 449
,[19] Milnor number and Tjurina number of complete intersections, Math. Ann. 271 (1985) 121 | DOI
, ,[20] Singular points of complex hypersurfaces, 61, Princeton Univ. Press (1968)
,[21] On Tjurina transform and resolution of determinantal singularities, preprint (2016)
,[22] Milnor number equals Tjurina number for functions on space curves, J. Lond. Math. Soc. 63 (2001) 177 | DOI
, ,[23] Numerical Gorenstein elliptic singularities, Math. Z. 249 (2005) 31 | DOI
,[24] Familien komplexer Räume mit streng pseudokonvexer spezieller Faser, Comment. Math. Helv. 51 (1976) 547 | DOI
,[25] Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math. 14 (1971) 123 | DOI
,[26] Nonsingular deformations of a determinantal scheme, Pacific J. Math. 65 (1976) 209 | DOI
,[27] Deformations of Cohen–Macaulay schemes of codimension 2 and non-singular deformations of space curves, Amer. J. Math. 99 (1977) 669 | DOI
,[28] Weakly normal surface singularities and their improvements, PhD thesis, Universiteit Leiden (1987)
,[29] Absolute isolatedness of rational singularities and triple rational points, Funkcional. Anal. i Priložen. 2 (1968) 70
,[30] Equations defining rational singularities, Ann. Sci. École Norm. Sup. 10 (1977) 231 | DOI
,[31] Simultaneous resolution of rational singularities, Compos. Math. 38 (1979) 43
,[32] Milnor and Tjurina numbers for smoothings of surface singularities, Algebr. Geom. 2 (2015) 315 | DOI
,[33] An observation concerning the vanishing topology of certain isolated determinantal singularities, Math. Z. 291 (2019) 1263 | DOI
,Cité par Sources :