Blowups with log canonical singularities
Geometry & topology, Tome 25 (2021) no. 4, pp. 2145-2166.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the minimum weight of a weighted blowup of 𝔸d with 𝜀–log canonical singularities is bounded by a constant depending only on 𝜀 and d. This was conjectured by Birkar.

Using the recent classification of 4–dimensional empty simplices by Iglesias-Valiño and Santos, we work out an explicit bound for blowups of 𝔸4 with terminal singularities: the smallest weight is always at most 32, and at most 6 in all but finitely many cases.

DOI : 10.2140/gt.2021.25.2145
Classification : 14B05, 14E99, 14M25, 52B20
Keywords: binational geometry, log canonical singularities, blowups, lattice simplices

Sankaran, Gregory 1 ; Santos, Francisco 2

1 Department of Mathematical Sciences, University of Bath, Bath, United Kingdom
2 Departamento de Matemáticas, Estadística y Computación, Facultad de Ciencias, Universidad de Cantabria, Santander, Spain
@article{GT_2021_25_4_a9,
     author = {Sankaran, Gregory and Santos, Francisco},
     title = {Blowups with log canonical singularities},
     journal = {Geometry & topology},
     pages = {2145--2166},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2021},
     doi = {10.2140/gt.2021.25.2145},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2145/}
}
TY  - JOUR
AU  - Sankaran, Gregory
AU  - Santos, Francisco
TI  - Blowups with log canonical singularities
JO  - Geometry & topology
PY  - 2021
SP  - 2145
EP  - 2166
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2145/
DO  - 10.2140/gt.2021.25.2145
ID  - GT_2021_25_4_a9
ER  - 
%0 Journal Article
%A Sankaran, Gregory
%A Santos, Francisco
%T Blowups with log canonical singularities
%J Geometry & topology
%D 2021
%P 2145-2166
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2145/
%R 10.2140/gt.2021.25.2145
%F GT_2021_25_4_a9
Sankaran, Gregory; Santos, Francisco. Blowups with log canonical singularities. Geometry & topology, Tome 25 (2021) no. 4, pp. 2145-2166. doi : 10.2140/gt.2021.25.2145. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2145/

[1] R E Anno, Four-dimensional terminal Gorenstein quotient singularities, Mat. Zametki 73 (2003) 813

[2] M Barile, D Bernardi, A Borisov, J M Kantor, On empty lattice simplices in dimension 4, Proc. Amer. Math. Soc. 139 (2011) 4247 | DOI

[3] C Birkar, Anti-pluricanonical systems on Fano varieties, Ann. of Math. 190 (2019) 345 | DOI

[4] M Blanco, C Haase, J Hofmann, F Santos, The finiteness threshold width of lattice polytopes, Trans. Amer. Math. Soc. Ser. B 8 (2021) 399 | DOI

[5] J W Bober, Factorial ratios, hypergeometric series, and a family of step functions, J. Lond. Math. Soc. 79 (2009) 422 | DOI

[6] A Borisov, On classification of toric singularities, J. Math. Sci. (New York) 94 (1999) 1111 | DOI

[7] Y Chen, On singularities of threefold weighted blowups, J. Math. Soc. Japan (2021) 1 | DOI

[8] C A J Hurkens, Blowing up convex sets in the plane, Linear Algebra Appl. 134 (1990) 121 | DOI

[9] Ó Iglesias-Valiño, F Santos, The complete classification of empty lattice 4–simplices, Rev. Mat. Iberoam. (2021) | DOI

[10] M Kawakita, Divisorial contractions in dimension three which contract divisors to smooth points, Invent. Math. 145 (2001) 105 | DOI

[11] J Lawrence, Finite unions of closed subgroups of the n–dimensional torus, from: "Applied geometry and discrete mathematics" (editors P Gritzmann, B Sturmfels), DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 4, Amer. Math. Soc. (1991) 433 | DOI

[12] S Mori, D R Morrison, I Morrison, On four-dimensional terminal quotient singularities, Math. Comp. 51 (1988) 769 | DOI

[13] D R Morrison, G Stevens, Terminal quotient singularities in dimensions three and four, Proc. Amer. Math. Soc. 90 (1984) 15 | DOI

[14] T Oda, Convex bodies and algebraic geometry, 15, Springer (1988)

[15] G K Sankaran, Stable quintuples and terminal quotient singularities, Math. Proc. Cambridge Philos. Soc. 107 (1990) 91 | DOI

[16] G K White, Lattice tetrahedra, Canad. J. Math. 16 (1964) 389 | DOI

Cité par Sources :