Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that the minimum weight of a weighted blowup of with –log canonical singularities is bounded by a constant depending only on and . This was conjectured by Birkar.
Using the recent classification of –dimensional empty simplices by Iglesias-Valiño and Santos, we work out an explicit bound for blowups of with terminal singularities: the smallest weight is always at most , and at most in all but finitely many cases.
Sankaran, Gregory 1 ; Santos, Francisco 2
@article{GT_2021_25_4_a9, author = {Sankaran, Gregory and Santos, Francisco}, title = {Blowups with log canonical singularities}, journal = {Geometry & topology}, pages = {2145--2166}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2021}, doi = {10.2140/gt.2021.25.2145}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2145/} }
TY - JOUR AU - Sankaran, Gregory AU - Santos, Francisco TI - Blowups with log canonical singularities JO - Geometry & topology PY - 2021 SP - 2145 EP - 2166 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2145/ DO - 10.2140/gt.2021.25.2145 ID - GT_2021_25_4_a9 ER -
Sankaran, Gregory; Santos, Francisco. Blowups with log canonical singularities. Geometry & topology, Tome 25 (2021) no. 4, pp. 2145-2166. doi : 10.2140/gt.2021.25.2145. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2145/
[1] Four-dimensional terminal Gorenstein quotient singularities, Mat. Zametki 73 (2003) 813
,[2] On empty lattice simplices in dimension 4, Proc. Amer. Math. Soc. 139 (2011) 4247 | DOI
, , , ,[3] Anti-pluricanonical systems on Fano varieties, Ann. of Math. 190 (2019) 345 | DOI
,[4] The finiteness threshold width of lattice polytopes, Trans. Amer. Math. Soc. Ser. B 8 (2021) 399 | DOI
, , , ,[5] Factorial ratios, hypergeometric series, and a family of step functions, J. Lond. Math. Soc. 79 (2009) 422 | DOI
,[6] On classification of toric singularities, J. Math. Sci. (New York) 94 (1999) 1111 | DOI
,[7] On singularities of threefold weighted blowups, J. Math. Soc. Japan (2021) 1 | DOI
,[8] Blowing up convex sets in the plane, Linear Algebra Appl. 134 (1990) 121 | DOI
,[9] The complete classification of empty lattice 4–simplices, Rev. Mat. Iberoam. (2021) | DOI
, ,[10] Divisorial contractions in dimension three which contract divisors to smooth points, Invent. Math. 145 (2001) 105 | DOI
,[11] Finite unions of closed subgroups of the n–dimensional torus, from: "Applied geometry and discrete mathematics" (editors P Gritzmann, B Sturmfels), DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 4, Amer. Math. Soc. (1991) 433 | DOI
,[12] On four-dimensional terminal quotient singularities, Math. Comp. 51 (1988) 769 | DOI
, , ,[13] Terminal quotient singularities in dimensions three and four, Proc. Amer. Math. Soc. 90 (1984) 15 | DOI
, ,[14] Convex bodies and algebraic geometry, 15, Springer (1988)
,[15] Stable quintuples and terminal quotient singularities, Math. Proc. Cambridge Philos. Soc. 107 (1990) 91 | DOI
,[16] Lattice tetrahedra, Canad. J. Math. 16 (1964) 389 | DOI
,Cité par Sources :