The cohomology rings of smooth toric varieties and quotients of moment-angle complexes
Geometry & topology, Tome 25 (2021) no. 4, pp. 2109-2144.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Partial quotients of moment-angle complexes are topological analogues of smooth, not necessarily compact toric varieties. In 1998, Buchstaber and Panov proposed a formula for the cohomology ring of such a partial quotient in terms of a torsion product involving the corresponding Stanley–Reisner ring. We show that their formula gives the correct cup product if 2 is invertible in the chosen coefficient ring, but not in general. We rectify this by defining an explicit deformation of the canonical multiplication on the torsion product.

DOI : 10.2140/gt.2021.25.2109
Keywords: toric variety, partial quotient, moment-angle complex, cohomology ring

Franz, Matthias 1

1 Department of Mathematics, University of Western Ontario, London, ON, Canada
@article{GT_2021_25_4_a8,
     author = {Franz, Matthias},
     title = {The cohomology rings of smooth toric varieties and quotients of moment-angle complexes},
     journal = {Geometry & topology},
     pages = {2109--2144},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2021},
     doi = {10.2140/gt.2021.25.2109},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2109/}
}
TY  - JOUR
AU  - Franz, Matthias
TI  - The cohomology rings of smooth toric varieties and quotients of moment-angle complexes
JO  - Geometry & topology
PY  - 2021
SP  - 2109
EP  - 2144
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2109/
DO  - 10.2140/gt.2021.25.2109
ID  - GT_2021_25_4_a8
ER  - 
%0 Journal Article
%A Franz, Matthias
%T The cohomology rings of smooth toric varieties and quotients of moment-angle complexes
%J Geometry & topology
%D 2021
%P 2109-2144
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2109/
%R 10.2140/gt.2021.25.2109
%F GT_2021_25_4_a8
Franz, Matthias. The cohomology rings of smooth toric varieties and quotients of moment-angle complexes. Geometry & topology, Tome 25 (2021) no. 4, pp. 2109-2144. doi : 10.2140/gt.2021.25.2109. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2109/

[1] I V Baskakov, V M Buchstaber, T E Panov, Cellular cochain algebras and torus actions, Uspekhi Mat. Nauk 59 (2004) 159

[2] P Baum, L Smith, The real cohomology of differentiable fibre bundles, Comment. Math. Helv. 42 (1967) 171 | DOI

[3] C Berger, B Fresse, Combinatorial operad actions on cochains, Math. Proc. Cambridge Philos. Soc. 137 (2004) 135 | DOI

[4] A Berglund, Homotopy invariants of Davis–Januszkiewicz spaces and moment-angle complexes, unpublished notes (2010)

[5] E Bifet, C De Concini, C Procesi, Cohomology of regular embeddings, Adv. Math. 82 (1990) 1 | DOI

[6] G E Bredon, Introduction to compact transformation groups, 46, Academic (1972)

[7] V M Buchstaber, T E Panov, Algebraic topology of manifolds defined by simple polytopes, Uspekhi Mat. Nauk 53 (1998) 195

[8] V M Buchstaber, T E Panov, Torus actions and the combinatorics of polytopes, Tr. Mat. Inst. Steklova 225 (1999) 96

[9] V M Buchstaber, T E Panov, Torus actions and their applications in topology and combinatorics, 24, Amer. Math. Soc. (2002) | DOI

[10] V M Buchstaber, T E Panov, Torus actions in topology and combinatorics, Mosk. Tsentr Nepreryvnogo Matematicheskogo Obrazovaniya (2004) 272

[11] V M Buchstaber, T E Panov, Toric topology, 204, Amer. Math. Soc. (2015) | DOI

[12] L Cai, On products in a real moment-angle manifold, J. Math. Soc. Japan 69 (2017) 503 | DOI

[13] S Choi, H Park, On the cohomology and their torsion of real toric objects, Forum Math. 29 (2017) 543 | DOI

[14] S Choi, H Park, Multiplicative structure of the cohomology ring of real toric spaces, Homology Homotopy Appl. 22 (2020) 97 | DOI

[15] M W Davis, T Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991) 417 | DOI

[16] D Edidin, Equivariant geometry and the cohomology of the moduli space of curves, from: "Handbook of moduli, I" (editors G Farkas, I Morrison), Adv. Lect. Math. 24, International (2013) 259

[17] M Franz, Koszul duality for tori, PhD thesis, Universität Konstanz (2001)

[18] M Franz, On the integral cohomology of smooth toric varieties, preprint (2003)

[19] M Franz, The integral cohomology of toric manifolds, Tr. Mat. Inst. Steklova 252 (2006) 61

[20] M Franz, Describing toric varieties and their equivariant cohomology, Colloq. Math. 121 (2010) 1 | DOI

[21] M Franz, The cohomology rings of homogeneous spaces, preprint (2021)

[22] M Franz, Homotopy Gerstenhaber formality of Davis–Januszkiewicz spaces, preprint (2021)

[23] M Franz, The cohomology rings of real toric spaces and smooth real toric varieties, preprint (2021)

[24] S Gitler, S López De Medrano, Intersections of quadrics, moment-angle manifolds and connected sums, Geom. Topol. 17 (2013) 1497 | DOI

[25] J C Hausmann, Mod two homology and cohomology, Springer (2014) | DOI

[26] J Jurkiewicz, Torus embeddings, polyhedra, k∗–actions and homology, Dissertationes Math. (Rozprawy Mat.) 236 (1985) 64

[27] T Kadeishvili, S Saneblidze, A cubical model for a fibration, J. Pure Appl. Algebra 196 (2005) 203 | DOI

[28] M De Longueville, The ring structure on the cohomology of coordinate subspace arrangements, Math. Z. 233 (2000) 553 | DOI

[29] J P May, Simplicial objects in algebraic topology, , Univ. of Chicago Press (1992)

[30] D Notbohm, N Ray, On Davis–Januszkiewicz homotopy types, I : Formality and rationalisation, Algebr. Geom. Topol. 5 (2005) 31 | DOI

[31] T E Panov, On the cohomology of quotient spaces of moment-angle complexes, Uspekhi Mat. Nauk 70 (2015) 209

[32] T E Panov, N Ray, Categorical aspects of toric topology, from: "Toric topology" (editors M Harada, Y Karshon, M Masuda, T Panov), Contemp. Math. 460, Amer. Math. Soc. (2008) 293 | DOI

[33] S Saneblidze, The bitwisted Cartesian model for the free loop fibration, Topology Appl. 156 (2009) 897 | DOI

[34] N P Strickland, Notes on toric spaces, unpublished notes (1999)

[35] A I Suciu, The rational homology of real toric manifolds, preprint (2013)

[36] A J Trevisan, Generalized Davis–Januszkiewicz spaces and their applications to algebra and topology, PhD thesis, Vrije Universiteit Amsterdam (2012)

[37] A A Voronov, M Gerstenkhaber, Higher-order operations on the Hochschild complex, Funktsional. Anal. i Prilozhen. 29 (1995) 1

Cité par Sources :