Analytic tangent cones of admissible Hermitian Yang–Mills connections
Geometry & topology, Tome 25 (2021) no. 4, pp. 2061-2108.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the analytic tangent cones of admissible Hermitian Yang–Mills connections near a homogeneous singularity of a reflexive sheaf, and relate it to the Harder–Narasimhan–Seshadri filtration. We also give an algebrogeometric characterization of the bubbling set.

DOI : 10.2140/gt.2021.25.2061
Classification : 53C07
Keywords: Hermitian Yang–Mills, tangent cone, reflexive sheaf

Chen, Xuemiao 1 ; Sun, Song 2

1 Department of Mathematics, University of Maryland, College Park, MD, United States
2 Department of Mathematics, University of California, Berkeley, Berkeley, CA, United States
@article{GT_2021_25_4_a7,
     author = {Chen, Xuemiao and Sun, Song},
     title = {Analytic tangent cones of admissible {Hermitian} {Yang{\textendash}Mills} connections},
     journal = {Geometry & topology},
     pages = {2061--2108},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2021},
     doi = {10.2140/gt.2021.25.2061},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2061/}
}
TY  - JOUR
AU  - Chen, Xuemiao
AU  - Sun, Song
TI  - Analytic tangent cones of admissible Hermitian Yang–Mills connections
JO  - Geometry & topology
PY  - 2021
SP  - 2061
EP  - 2108
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2061/
DO  - 10.2140/gt.2021.25.2061
ID  - GT_2021_25_4_a7
ER  - 
%0 Journal Article
%A Chen, Xuemiao
%A Sun, Song
%T Analytic tangent cones of admissible Hermitian Yang–Mills connections
%J Geometry & topology
%D 2021
%P 2061-2108
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2061/
%R 10.2140/gt.2021.25.2061
%F GT_2021_25_4_a7
Chen, Xuemiao; Sun, Song. Analytic tangent cones of admissible Hermitian Yang–Mills connections. Geometry & topology, Tome 25 (2021) no. 4, pp. 2061-2108. doi : 10.2140/gt.2021.25.2061. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2061/

[1] S Bando, Y T Siu, Stable sheaves and Einstein–Hermitian metrics, from: "Geometry and analysis on complex manifolds" (editors T Mabuchi, J Noguchi, T Ochiai), World Sci. (1994) 39 | DOI

[2] A L Besse, Einstein manifolds, 10, Springer (1987) | DOI

[3] X Chen, S Sun, Singularities of Hermitian–Yang–Mills connections and Harder–Narasimhan–Seshadri filtrations, Duke Math. J. 169 (2020) 2629 | DOI

[4] P Griffiths, J Harris, Principles of algebraic geometry, Wiley (1978) | DOI

[5] S Kobayashi, Differential geometry of complex vector bundles, 15, Princeton Univ. Press (1987) | DOI

[6] B S Mityagin, The zero set of a real analytic function, Mat. Zametki 107 (2020) 473 | DOI

[7] H Nakajima, Compactness of the moduli space of Yang–Mills connections in higher dimensions, J. Math. Soc. Japan 40 (1988) 383 | DOI

[8] C Okonek, M Schneider, H Spindler, Vector bundles on complex projective spaces, 3, Birkhäuser (1980) | DOI

[9] P Price, A monotonicity formula for Yang–Mills fields, Manuscripta Math. 43 (1983) 131 | DOI

[10] B Shiffman, On the removal of singularities of analytic sets, Michigan Math. J. 15 (1968) 111 | DOI

[11] B Sibley, R A Wentworth, Analytic cycles, Bott–Chern forms, and singular sets for the Yang–Mills flow on Kähler manifolds, Adv. Math. 279 (2015) 501 | DOI

[12] G Tian, Gauge theory and calibrated geometry, I, Ann. of Math. 151 (2000) 193 | DOI

[13] K Uhlenbeck, S T Yau, On the existence of Hermitian–Yang–Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986) | DOI

Cité par Sources :