Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the analytic tangent cones of admissible Hermitian Yang–Mills connections near a homogeneous singularity of a reflexive sheaf, and relate it to the Harder–Narasimhan–Seshadri filtration. We also give an algebrogeometric characterization of the bubbling set.
Chen, Xuemiao 1 ; Sun, Song 2
@article{GT_2021_25_4_a7, author = {Chen, Xuemiao and Sun, Song}, title = {Analytic tangent cones of admissible {Hermitian} {Yang{\textendash}Mills} connections}, journal = {Geometry & topology}, pages = {2061--2108}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2021}, doi = {10.2140/gt.2021.25.2061}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2061/} }
TY - JOUR AU - Chen, Xuemiao AU - Sun, Song TI - Analytic tangent cones of admissible Hermitian Yang–Mills connections JO - Geometry & topology PY - 2021 SP - 2061 EP - 2108 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2061/ DO - 10.2140/gt.2021.25.2061 ID - GT_2021_25_4_a7 ER -
Chen, Xuemiao; Sun, Song. Analytic tangent cones of admissible Hermitian Yang–Mills connections. Geometry & topology, Tome 25 (2021) no. 4, pp. 2061-2108. doi : 10.2140/gt.2021.25.2061. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.2061/
[1] Stable sheaves and Einstein–Hermitian metrics, from: "Geometry and analysis on complex manifolds" (editors T Mabuchi, J Noguchi, T Ochiai), World Sci. (1994) 39 | DOI
, ,[2] Einstein manifolds, 10, Springer (1987) | DOI
,[3] Singularities of Hermitian–Yang–Mills connections and Harder–Narasimhan–Seshadri filtrations, Duke Math. J. 169 (2020) 2629 | DOI
, ,[4] Principles of algebraic geometry, Wiley (1978) | DOI
, ,[5] Differential geometry of complex vector bundles, 15, Princeton Univ. Press (1987) | DOI
,[6] The zero set of a real analytic function, Mat. Zametki 107 (2020) 473 | DOI
,[7] Compactness of the moduli space of Yang–Mills connections in higher dimensions, J. Math. Soc. Japan 40 (1988) 383 | DOI
,[8] Vector bundles on complex projective spaces, 3, Birkhäuser (1980) | DOI
, , ,[9] A monotonicity formula for Yang–Mills fields, Manuscripta Math. 43 (1983) 131 | DOI
,[10] On the removal of singularities of analytic sets, Michigan Math. J. 15 (1968) 111 | DOI
,[11] Analytic cycles, Bott–Chern forms, and singular sets for the Yang–Mills flow on Kähler manifolds, Adv. Math. 279 (2015) 501 | DOI
, ,[12] Gauge theory and calibrated geometry, I, Ann. of Math. 151 (2000) 193 | DOI
,[13] On the existence of Hermitian–Yang–Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986) | DOI
, ,Cité par Sources :