Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We give two constructions of functorial topological realizations for schemes of finite type over the field of formal Laurent series with complex coefficients, with values in the homotopy category of spaces over the circle. The problem of constructing such a realization was stated by D Treumann, motivated by certain questions in mirror symmetry. The first construction uses spreading out and the usual Betti realization over . The second uses generalized semistable models and the log Betti realization defined by Kato and Nakayama, and applies to smooth rigid analytic spaces as well. We provide comparison theorems between the two constructions and relate them to the étale homotopy type and de Rham cohomology. As an illustration of the second construction, we treat two examples, the Tate curve and the nonarchimedean Hopf surface.
Achinger, Piotr 1 ; Talpo, Mattia 2
@article{GT_2021_25_4_a4, author = {Achinger, Piotr and Talpo, Mattia}, title = {Betti realization of varieties defined by formal {Laurent} series}, journal = {Geometry & topology}, pages = {1919--1978}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2021}, doi = {10.2140/gt.2021.25.1919}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1919/} }
TY - JOUR AU - Achinger, Piotr AU - Talpo, Mattia TI - Betti realization of varieties defined by formal Laurent series JO - Geometry & topology PY - 2021 SP - 1919 EP - 1978 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1919/ DO - 10.2140/gt.2021.25.1919 ID - GT_2021_25_4_a4 ER -
Achinger, Piotr; Talpo, Mattia. Betti realization of varieties defined by formal Laurent series. Geometry & topology, Tome 25 (2021) no. 4, pp. 1919-1978. doi : 10.2140/gt.2021.25.1919. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1919/
[1] Logarithmic geometry and moduli, from: "Handbook of moduli, I" (editors G Farkas, I Morrison), Adv. Lect. Math. 24, International (2013) 1
, , , , , , ,[2] Functorial factorization of birational maps for qe schemes in characteristic 0, Algebra Number Theory 13 (2019) 379 | DOI
, ,[3] K(π,1) spaces in algebraic geometry, PhD thesis, University of California, Berkeley (2015)
,[4] Monodromy and log geometry, Tunis. J. Math. 2 (2020) 455 | DOI
, ,[5] Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. 36 (1969) 23 | DOI
,[6] Théorie des topos et cohomologie étale des schémas, Tome 2 : Exposés V–VIII (SGA 42 ), 270, Springer (1972)
, , ,[7] Théorie des topos et cohomologie étale des schémas, Tome 3 : Exposés IX–XIX (SGA 43 ), 305, Springer (1973)
, , ,[8] Étale homotopy, 100, Springer (1969) | DOI
, ,[9] Note sur les opérations de Grothendieck et la réalisation de Betti, J. Inst. Math. Jussieu 9 (2010) 225 | DOI
,[10] p–adic periods and derived de Rham cohomology, J. Amer. Math. Soc. 25 (2012) 715 | DOI
,[11] The Stacks project, electronic reference (2005–)
, , ,[12] Complex analytic vanishing cycles for formal schemes, preprint (2015)
,[13] Étale homotopy theory of non-Archimedean analytic spaces, preprint (2017)
,[14] Topological K–theory of complex noncommutative spaces, Compos. Math. 152 (2016) 489 | DOI
,[15] Parabolic sheaves on logarithmic schemes, Adv. Math. 231 (2012) 1327 | DOI
, ,[16] Lectures on formal and rigid geometry, 2105, Springer (2014) | DOI
,[17] Non-Archimedean analysis : a systematic approach to rigid analytic geometry, 261, Springer (1984)
, , ,[18] Formal and rigid geometry, I : Rigid spaces, Math. Ann. 295 (1993) 291 | DOI
, ,[19] On the étale homotopy type of higher stacks, preprint (2015)
,[20] Kato–Nakayama spaces, infinite root stacks and the profinite homotopy type of log schemes, Geom. Topol. 21 (2017) 3093 | DOI
, , , ,[21] On the profinite homotopy type of log schemes, preprint (2019)
, , , ,[22] Deligne’s notes on Nagata compactifications, J. Ramanujan Math. Soc. 22 (2007) 205
,[23] Topological hypercovers and A1–realizations, Math. Z. 246 (2004) 667 | DOI
, ,[24] Calculating simplicial localizations, J. Pure Appl. Algebra 18 (1980) 17 | DOI
, ,[25] Étale homotopy of simplicial schemes, 104, Princeton Univ. Press (1982)
,[26] A proof of the absolute purity conjecture (after Gabber), from: "Algebraic geometry" (editors S Usui, M Green, L Illusie, K Kato, E Looijenga, S Mukai, S Saito), Adv. Stud. Pure Math. 36, Math. Soc. Japan (2002) 153 | DOI
,[27] Foundations of rigid geometry, I, Eur. Math. Soc. (2018) | DOI
, ,[28] Calculus of fractions and homotopy theory, 35, Springer (1967) | DOI
, ,[29] Cohomologie non abélienne, 179, Springer (1971) | DOI
,[30] Stratified Morse theory, 14, Springer (1988) | DOI
, ,[31] A short course on ∞–categories, preprint (2010)
,[32] Differential forms in the h–topology, Algebr. Geom. 1 (2014) 449 | DOI
, ,[33] An overview of the work of K Fujiwara, K Kato, and C Nakayama on logarithmic étale cohomology, from: "Cohomologies –adiques et applications arithmétiques, II" (editors P Berthelot, J M Fontaine, L Illusie, K Kato, M Rapoport), Astérisque 279, Soc. Math. France (2002) 271
,[34] Quasi-unipotent logarithmic Riemann–Hilbert correspondences, J. Math. Sci. Univ. Tokyo 12 (2005) 1
, , ,[35] Simplicial presheaves, J. Pure Appl. Algebra 47 (1987) 35 | DOI
,[36] Log Betti cohomology, log étale cohomology, and log de Rham cohomology of log schemes over C, Kodai Math. J. 22 (1999) 161 | DOI
, ,[37] The de Rham functor for logarithmic D–modules, Selecta Math. 26 (2020) | DOI
,[38] Higher topos theory, 170, Princeton Univ. Press (2009) | DOI
,[39] Derived algebraic geometry, V: Structured spaces, preprint (2011)
,[40] A1–homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999) 45 | DOI
, ,[41] Logarithmic étale cohomology, Math. Ann. 308 (1997) 365 | DOI
,[42] Nearby cycles for log smooth families, Compos. Math. 112 (1998) 45 | DOI
,[43] Relative rounding in toric and logarithmic geometry, Geom. Topol. 14 (2010) 2189 | DOI
, ,[44] Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Inst. Hautes Études Sci. Publ. Math. 21 (1964) 128 | DOI
,[45] Lectures on logarithmic algebraic geometry, 178, Cambridge Univ. Press (2018) | DOI
,[46] Kummer coverings and specialization, preprint (2017)
,[47] Géométrie analytique rigide d’après Tate, Kiehl,..., from: "Table ronde d’analyse non archimédienne", Bull. Soc. Math. France, Mém 39-40, Soc. Math. France (1974) 319 | DOI
,[48] Submersions and effective descent of étale morphisms, Bull. Soc. Math. France 138 (2010) 181 | DOI
,[49] Exemples de variétés projectives conjuguées non homéomorphes, C. R. Acad. Sci. Paris 258 (1964) 4194
,[50] A Vietoris mapping theorem for homotopy, Proc. Amer. Math. Soc. 8 (1957) 604 | DOI
,[51] Motivic integral of K3 surfaces over a non-Archimedean field, Adv. Math. 228 (2011) 2688 | DOI
, ,[52] Singular homology of abstract algebraic varieties, Invent. Math. 123 (1996) 61 | DOI
, ,[53] Infinite root stacks and quasi-coherent sheaves on logarithmic schemes, Proc. Lond. Math. Soc. 116 (2018) 1187 | DOI
, ,[54] The Kato–Nakayama space as a transcendental root stack, Int. Math. Res. Not. 2018 (2018) 6145 | DOI
, ,[55] Functorial desingularization of quasi-excellent schemes in characteristic zero: the nonembedded case, Duke Math. J. 161 (2012) 2207 | DOI
,[56] Is there a geometric realization of C((t))–varieties ?, MathOverflow question (2016)
,[57] Complex K–theory of mirror pairs, preprint (2019)
,[58] Non-Archimedean Hopf surfaces, Sém. Théor. Nombres Bordeaux 3 (1991) 405 | DOI
,Cité par Sources :