A refinement of Khovanov homology
Geometry & topology, Tome 25 (2021) no. 4, pp. 1861-1917.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We refine Khovanov homology in the presence of an involution on the link. This refinement takes the form of a triply graded theory, arising from a pair of filtrations. We focus primarily on strongly invertible knots and show, for instance, that this refinement is able to detect mutation.

DOI : 10.2140/gt.2021.25.1861
Classification : 57M25, 57M27, 57M60
Keywords: Khovanov, mutant, strongly invertible, knot theory

Lobb, Andrew 1 ; Watson, Liam 2

1 Department of Mathematical Sciences, Durham University, Durham, United Kingdom
2 Mathematics Department, University of British Columbia, Vancouver, BC, Canada
@article{GT_2021_25_4_a3,
     author = {Lobb, Andrew and Watson, Liam},
     title = {A refinement of {Khovanov} homology},
     journal = {Geometry & topology},
     pages = {1861--1917},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2021},
     doi = {10.2140/gt.2021.25.1861},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1861/}
}
TY  - JOUR
AU  - Lobb, Andrew
AU  - Watson, Liam
TI  - A refinement of Khovanov homology
JO  - Geometry & topology
PY  - 2021
SP  - 1861
EP  - 1917
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1861/
DO  - 10.2140/gt.2021.25.1861
ID  - GT_2021_25_4_a3
ER  - 
%0 Journal Article
%A Lobb, Andrew
%A Watson, Liam
%T A refinement of Khovanov homology
%J Geometry & topology
%D 2021
%P 1861-1917
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1861/
%R 10.2140/gt.2021.25.1861
%F GT_2021_25_4_a3
Lobb, Andrew; Watson, Liam. A refinement of Khovanov homology. Geometry & topology, Tome 25 (2021) no. 4, pp. 1861-1917. doi : 10.2140/gt.2021.25.1861. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1861/

[1] D Bar-Natan, Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9 (2005) 1443 | DOI

[2] J M Bloom, Odd Khovanov homology is mutation invariant, Math. Res. Lett. 17 (2010) 1 | DOI

[3] C Collari, P Lisca, On symmetric equivalence of symmetric union diagrams, preprint (2019)

[4] O Couture, Khovanov homology for signed divides, Algebr. Geom. Topol. 9 (2009) 1987 | DOI

[5] R Hartley, Knots and involutions, Math. Z. 171 (1980) 175 | DOI

[6] A E Hatcher, A proof of the Smale conjecture, Diff(S3) ≃ O(4), Ann. of Math. 117 (1983) 553 | DOI

[7] M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359 | DOI

[8] S Kojima, M Yamasaki, Some new invariants of links, Invent. Math. 54 (1979) 213 | DOI

[9] A Lobb, The Kanenobu knots and Khovanov–Rozansky homology, Proc. Amer. Math. Soc. 142 (2014) 1447 | DOI

[10] J W Morgan, H Bass, editors, The Smith conjecture, 112, Academic (1984)

[11] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311 | DOI

[12] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 | DOI

[13] P Ozsváth, Z Szabó, Knot Floer homology, genus bounds, and mutation, Topology Appl. 141 (2004) 59 | DOI

[14] L Piccirillo, The Conway knot is not slice, Ann. of Math. 191 (2020) 581 | DOI

[15] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)

[16] J Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419 | DOI

[17] K Reidemeister, Knotentheorie, 1, Springer (1932) | DOI

[18] R Riley, An elliptical path from parabolic representations to hyperbolic structures, from: "Topology of low-dimensional manifolds" (editor R A Fenn), Lecture Notes in Math. 722, Springer (1979) 99 | DOI

[19] D Rolfsen, Knots and links, 7, Publish or Perish (1976)

[20] M Sakuma, On strongly invertible knots, from: "Algebraic and topological theories" (editors M Nagata, S Araki, A Hattori), Kinokuniya (1986) 176

[21] O Schreier, Über die Gruppen AaBb = 1, Abh. Math. Sem. Univ. Hamburg 3 (1924) 167 | DOI

[22] M Snape, Homological invariants of strongly invertible knots, PhD thesis, University of Glasgow (2018)

[23] W P Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982) 357 | DOI

[24] H F Trotter, Non-invertible knots exist, Topology 2 (1963) 275 | DOI

[25] F Waldhausen, Über Involutionen der 3–Sphäre, Topology 8 (1969) 81 | DOI

[26] L Watson, Knots with identical Khovanov homology, Algebr. Geom. Topol. 7 (2007) 1389 | DOI

[27] L Watson, Khovanov homology and the symmetry group of a knot, Adv. Math. 313 (2017) 915 | DOI

[28] S M Wehrli, Mutation invariance of Khovanov homology over F2, Quantum Topol. 1 (2010) 111 | DOI

Cité par Sources :