Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We refine Khovanov homology in the presence of an involution on the link. This refinement takes the form of a triply graded theory, arising from a pair of filtrations. We focus primarily on strongly invertible knots and show, for instance, that this refinement is able to detect mutation.
Lobb, Andrew 1 ; Watson, Liam 2
@article{GT_2021_25_4_a3, author = {Lobb, Andrew and Watson, Liam}, title = {A refinement of {Khovanov} homology}, journal = {Geometry & topology}, pages = {1861--1917}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2021}, doi = {10.2140/gt.2021.25.1861}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1861/} }
Lobb, Andrew; Watson, Liam. A refinement of Khovanov homology. Geometry & topology, Tome 25 (2021) no. 4, pp. 1861-1917. doi : 10.2140/gt.2021.25.1861. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1861/
[1] Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9 (2005) 1443 | DOI
,[2] Odd Khovanov homology is mutation invariant, Math. Res. Lett. 17 (2010) 1 | DOI
,[3] On symmetric equivalence of symmetric union diagrams, preprint (2019)
, ,[4] Khovanov homology for signed divides, Algebr. Geom. Topol. 9 (2009) 1987 | DOI
,[5] Knots and involutions, Math. Z. 171 (1980) 175 | DOI
,[6] A proof of the Smale conjecture, Diff(S3) ≃ O(4), Ann. of Math. 117 (1983) 553 | DOI
,[7] A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359 | DOI
,[8] Some new invariants of links, Invent. Math. 54 (1979) 213 | DOI
, ,[9] The Kanenobu knots and Khovanov–Rozansky homology, Proc. Amer. Math. Soc. 142 (2014) 1447 | DOI
,[10] The Smith conjecture, 112, Academic (1984)
, , editors,[11] Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311 | DOI
, ,[12] Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 | DOI
, ,[13] Knot Floer homology, genus bounds, and mutation, Topology Appl. 141 (2004) 59 | DOI
, ,[14] The Conway knot is not slice, Ann. of Math. 191 (2020) 581 | DOI
,[15] Floer homology and knot complements, PhD thesis, Harvard University (2003)
,[16] Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419 | DOI
,[17] Knotentheorie, 1, Springer (1932) | DOI
,[18] An elliptical path from parabolic representations to hyperbolic structures, from: "Topology of low-dimensional manifolds" (editor R A Fenn), Lecture Notes in Math. 722, Springer (1979) 99 | DOI
,[19] Knots and links, 7, Publish or Perish (1976)
,[20] On strongly invertible knots, from: "Algebraic and topological theories" (editors M Nagata, S Araki, A Hattori), Kinokuniya (1986) 176
,[21] Über die Gruppen AaBb = 1, Abh. Math. Sem. Univ. Hamburg 3 (1924) 167 | DOI
,[22] Homological invariants of strongly invertible knots, PhD thesis, University of Glasgow (2018)
,[23] Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982) 357 | DOI
,[24] Non-invertible knots exist, Topology 2 (1963) 275 | DOI
,[25] Über Involutionen der 3–Sphäre, Topology 8 (1969) 81 | DOI
,[26] Knots with identical Khovanov homology, Algebr. Geom. Topol. 7 (2007) 1389 | DOI
,[27] Khovanov homology and the symmetry group of a knot, Adv. Math. 313 (2017) 915 | DOI
,[28] Mutation invariance of Khovanov homology over F2, Quantum Topol. 1 (2010) 111 | DOI
,Cité par Sources :