Commensurating HNN extensions: nonpositive curvature and biautomaticity
Geometry & topology, Tome 25 (2021) no. 4, pp. 1819-1860.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the commensurator of any quasiconvex abelian subgroup in a biautomatic group is small, in the sense that it has finite image in the abstract commensurator of the subgroup. Using this criterion we exhibit groups that are CAT(0) but not biautomatic. These groups also resolve a number of other questions concerning CAT(0) groups.

DOI : 10.2140/gt.2021.25.1819
Classification : 20F10, 20F67, 20E06
Keywords: commensurating HNN extension, biautomatic group, CAT(0) group

Leary, Ian J 1 ; Minasyan, Ashot 1

1 School of Mathematical Sciences, University of Southampton, Southampton, United Kingdom
@article{GT_2021_25_4_a2,
     author = {Leary, Ian J and Minasyan, Ashot},
     title = {Commensurating {HNN} extensions: nonpositive curvature and biautomaticity},
     journal = {Geometry & topology},
     pages = {1819--1860},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2021},
     doi = {10.2140/gt.2021.25.1819},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1819/}
}
TY  - JOUR
AU  - Leary, Ian J
AU  - Minasyan, Ashot
TI  - Commensurating HNN extensions: nonpositive curvature and biautomaticity
JO  - Geometry & topology
PY  - 2021
SP  - 1819
EP  - 1860
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1819/
DO  - 10.2140/gt.2021.25.1819
ID  - GT_2021_25_4_a2
ER  - 
%0 Journal Article
%A Leary, Ian J
%A Minasyan, Ashot
%T Commensurating HNN extensions: nonpositive curvature and biautomaticity
%J Geometry & topology
%D 2021
%P 1819-1860
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1819/
%R 10.2140/gt.2021.25.1819
%F GT_2021_25_4_a2
Leary, Ian J; Minasyan, Ashot. Commensurating HNN extensions: nonpositive curvature and biautomaticity. Geometry & topology, Tome 25 (2021) no. 4, pp. 1819-1860. doi : 10.2140/gt.2021.25.1819. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1819/

[1] J M Alonso, M R Bridson, Semihyperbolic groups, Proc. London Math. Soc. 70 (1995) 56 | DOI

[2] A Amrhein, Characterizing biautomatic groups, preprint (2021)

[3] S Andreadakis, E Raptis, D Varsos, Residual finiteness and Hopficity of certain HNN extensions, Arch. Math. Basel 47 (1986) 1 | DOI

[4] S Andreadakis, E Raptis, D Varsos, Hopficity of certain HNN-extensions, Comm. Algebra 20 (1992) 1511 | DOI

[5] G N Arzhantseva, J Burillo, M Lustig, L Reeves, H Short, E Ventura, Uniform non-amenability, Adv. Math. 197 (2005) 499 | DOI

[6] G Baumslag, S M Gersten, M Shapiro, H Short, Automatic groups and amalgams, J. Pure Appl. Algebra 76 (1991) 229 | DOI

[7] G Baumslag, D Solitar, Some two-generator one-relator non-Hopfian groups, Bull. Amer. Math. Soc. 68 (1962) 199 | DOI

[8] M Bestvina, Questions in geometric group theory, (2000)

[9] M R Bridson, Regular combings, nonpositive curvature and the quasiconvexity of abelian subgroups, J. Pure Appl. Algebra 88 (1993) 23 | DOI

[10] M R Bridson, On the growth of groups and automorphisms, Internat. J. Algebra Comput. 15 (2005) 869 | DOI

[11] M R Bridson, R H Gilman, Formal language theory and the geometry of 3–manifolds, Comment. Math. Helv. 71 (1996) 525 | DOI

[12] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999) | DOI

[13] P E Caprace, N Monod, Isometry groups of non-positively curved spaces: discrete subgroups, J. Topol. 2 (2009) 701 | DOI

[14] P E Caprace, N Monod, Erratum and addenda to “Isometry groups of non-positively curved spaces : discrete subgroups”, preprint (2019)

[15] M Casals-Ruiz, I Kazachkov, A Zakharov, Commensurability of Baumslag–Solitar groups, preprint (2019)

[16] M Elder, Automaticity, almost convexity and falsification by fellow traveler properties of some finitely generated groups, PhD thesis, The University of Melbourne (2000)

[17] D B A Epstein, J W Cannon, D F Holt, S V F Levy, M S Paterson, W P Thurston, Word processing in groups, Jones and Bartlett (1992)

[18] D B A Epstein, D F Holt, S E Rees, The use of Knuth–Bendix methods to solve the word problem in automatic groups, J. Symbolic Comput. 12 (1991) 397 | DOI

[19] B Farb, C Hruska, A Thomas, Problems on automorphism groups of nonpositively curved polyhedral complexes and their lattices, from: "Geometry, rigidity, and group actions" (editors B Farb, D Fisher), Univ. Chicago Press (2011) 515 | DOI

[20] S M Gersten, H B Short, Rational subgroups of biautomatic groups, Ann. of Math. 134 (1991) 125 | DOI

[21] J R J Groves, S M Hermiller, Isoperimetric inequalities for soluble groups, Geom. Dedicata 88 (2001) 239 | DOI

[22] J Huang, T Prytuła, Commensurators of abelian subgroups in CAT(0) groups, Math. Z. 296 (2020) 79 | DOI

[23] P H Kropholler, Baumslag–Solitar groups and some other groups of cohomological dimension two, Comment. Math. Helv. 65 (1990) 547 | DOI

[24] R C Lyndon, P E Schupp, Combinatorial group theory, 89, Springer (1977) | DOI

[25] S Macnbsp ;Lane, G Birkhoff, Algebra, Macmillan (1979)

[26] A Maltsev, On isomorphic matrix representations of infinite groups, Rec. Math. [Mat. Sbornik] N.S. 8 (50) (1940) 405

[27] J Mccammond, Algorithms, Dehn functions and automatic groups, preprint (2007)

[28] D Meier, Non-Hopfian groups, J. London Math. Soc. 26 (1982) 265 | DOI

[29] A Minasyan, On conjugacy separability of fibre products, Proc. Lond. Math. Soc. 115 (2017) 1170 | DOI

[30] A Minasyan, Virtual retraction properties in groups, Int. Math. Res. Not. (2019) | DOI

[31] W D Neumann, M Shapiro, Equivalent automatic structures and their boundaries, Internat. J. Algebra Comput. 2 (1992) 443 | DOI

[32] G A Niblo, L D Reeves, The geometry of cube complexes and the complexity of their fundamental groups, Topology 37 (1998) 621 | DOI

[33] D Osajda, T Prytuła, Classifying spaces for families of subgroups for systolic groups, Groups Geom. Dyn. 12 (2018) 1005 | DOI

[34] D V Osin, Kazhdan constants of hyperbolic groups, Funktsional. Anal. i Prilozhen. 36 (2002) 46

[35] T Prytuła, Bredon cohomological dimension for virtually abelian stabilisers for CAT(0) groups, J. Topol. Anal. (2019) | DOI

[36] J P Serre, Trees, Springer (2003) | DOI

[37] T G Group, GAP: Groups, algorithms and programming (2018)

[38] K Whyte, The large scale geometry of the higher Baumslag–Solitar groups, Geom. Funct. Anal. 11 (2001) 1327 | DOI

[39] D T Wise, A non-Hopfian automatic group, J. Algebra 180 (1996) 845 | DOI

[40] D T Wise, Non-positively curved squared complexes : aperiodic tilings and non-residually finite groups, PhD thesis, Princeton University (1996)

Cité par Sources :