Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the relationship between three compactifications of the moduli space of gauge equivalence classes of Hermitian Yang–Mills connections on a fixed Hermitian vector bundle over a projective algebraic manifold of arbitrary dimension. Via the Donaldson–Uhlenbeck–Yau theorem, this space is analytically isomorphic to the moduli space of stable holomorphic vector bundles, and as such it admits an algebraic compactification by Gieseker–Maruyama semistable torsion-free sheaves. A recent construction due to the first and third authors gives another compactification as a moduli space of slope semistable sheaves. Following fundamental work of Tian generalising the analysis of Uhlenbeck and Donaldson in complex dimension two, we define a gauge-theoretic compactification by adding certain gauge equivalence classes of ideal connections at the boundary. Extending work of Jun Li in the case of bundles on algebraic surfaces, we exhibit comparison maps from the sheaf-theoretic compactifications and prove their continuity. The continuity, together with a delicate analysis of the fibres of the map from the moduli space of slope semistable sheaves, allows us to endow the gauge-theoretic compactification with the structure of a complex analytic space.
Greb, Daniel 1 ; Sibley, Benjamin 2 ; Toma, Matei 3 ; Wentworth, Richard 4
@article{GT_2021_25_4_a1, author = {Greb, Daniel and Sibley, Benjamin and Toma, Matei and Wentworth, Richard}, title = {Complex algebraic compactifications of the moduli space of {Hermitian} {Yang{\textendash}Mills} connections on a projective manifold}, journal = {Geometry & topology}, pages = {1719--1818}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2021}, doi = {10.2140/gt.2021.25.1719}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1719/} }
TY - JOUR AU - Greb, Daniel AU - Sibley, Benjamin AU - Toma, Matei AU - Wentworth, Richard TI - Complex algebraic compactifications of the moduli space of Hermitian Yang–Mills connections on a projective manifold JO - Geometry & topology PY - 2021 SP - 1719 EP - 1818 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1719/ DO - 10.2140/gt.2021.25.1719 ID - GT_2021_25_4_a1 ER -
%0 Journal Article %A Greb, Daniel %A Sibley, Benjamin %A Toma, Matei %A Wentworth, Richard %T Complex algebraic compactifications of the moduli space of Hermitian Yang–Mills connections on a projective manifold %J Geometry & topology %D 2021 %P 1719-1818 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1719/ %R 10.2140/gt.2021.25.1719 %F GT_2021_25_4_a1
Greb, Daniel; Sibley, Benjamin; Toma, Matei; Wentworth, Richard. Complex algebraic compactifications of the moduli space of Hermitian Yang–Mills connections on a projective manifold. Geometry & topology, Tome 25 (2021) no. 4, pp. 1719-1818. doi : 10.2140/gt.2021.25.1719. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1719/
[1] Modifications analytiques, 943, Springer (1982) | DOI
, ,[2] Algebraization of formal moduli, II : Existence of modifications, Ann. of Math. 91 (1970) 88 | DOI
,[3] Stable sheaves and Einstein–Hermitian metrics, from: "Geometry and analysis on complex manifolds" (editors T Mabuchi, J Noguchi, T Ochiai), World Sci. (1994) 39 | DOI
, ,[4] Convexité de l’espace des cycles, Bull. Soc. Math. France 106 (1978) 373
,[5] Cycles analytiques complexes, II : L’espace des cycles, 27, Soc. Math. France (2020)
, ,[6] The Stacks project, electronic reference (2005–)
, , ,[7] Conditions for the analyticity of certain sets, Michigan Math. J. 11 (1964) 289 | DOI
,[8] A continuity theorem for families of sheaves on complex surfaces, J. Topol. 10 (2017) 995 | DOI
, , ,[9] Quotients of complex analytic spaces, from: "Contributions to function theory" (editor K Chandrasekharan), Tata Inst. Fund. Res. (1960) 1
,[10] The Cauchy–Riemann equations on product domains, Math. Ann. 349 (2011) 977 | DOI
, ,[11] Algebraic tangent cones of reflexive sheaves, Int. Math. Res. Not. 2020 (2020) 10042 | DOI
, ,[12] Analytic tangent cones of admissible Hermitian–Yang–Mills connections, Geom. Topol. (2021) 2061 | DOI
, ,[13] Reflexive sheaves, Hermitian–Yang–Mills connections, and tangent cones, Invent. Math. 225 (2021) 73 | DOI
, ,[14] Convergence properties of the Yang–Mills flow on Kähler surfaces, J. Reine Angew. Math. 575 (2004) 69 | DOI
, ,[15] Lectures on invariant theory, 296, Cambridge Univ. Press (2003) | DOI
,[16] Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles, Proc. Lond. Math. Soc. 50 (1985) 1 | DOI
,[17] Connections, cohomology and the intersection forms of 4–manifolds, J. Differential Geom. 24 (1986) 275 | DOI
,[18] Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987) 231 | DOI
,[19] Compactification and completion of Yang–Mills moduli spaces, from: "Differential geometry" (editors F J Carreras, O Gil-Medrano, A M Naveira), Lecture Notes in Math. 1410, Springer (1989) 145 | DOI
,[20] Polynomial invariants for smooth four-manifolds, Topology 29 (1990) 257 | DOI
,[21] The geometry of four-manifolds, Oxford Univ. Press (1990)
, ,[22] Gauge theory in higher dimensions, II, from: "Geometry of special holonomy and related topics" (editors N C Leung, S T Yau), Surv. Differential Geom. 16, International (2011) 1 | DOI
, ,[23] Irreducibility of the punctual quotient scheme of a surface, Ark. Mat. 37 (1999) 245 | DOI
, ,[24] The Neumann problem for the Cauchy–Riemann complex, 75, Princeton Univ. Press (1972) | DOI
, ,[25] The moduli space of Hermite–Einstein bundles on a compact Kähler manifold, Proc. Japan Acad. Ser. A Math. Sci. 63 (1987) 69 | DOI
, ,[26] Intersection theory, 2, Springer (1984) | DOI
,[27] On the moduli of vector bundles on an algebraic surface, Ann. of Math. 106 (1977) 45 | DOI
,[28] Elliptic partial differential equations of second order, 224, Springer (1983) | DOI
, ,[29] Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties, Duke Math. J. 165 (2016) 1965 | DOI
, , ,[30] Moduli of vector bundles on higher-dimensional base manifolds: construction and variation, Int. J. Math. 27 (2016) | DOI
, , ,[31] Compact moduli spaces for slope-semistable sheaves, Algebr. Geom. 4 (2017) 40 | DOI
, ,[32] Techniques de construction et théorèmes d’existence en géométrie algébrique, IV : Les schémas de Hilbert, from: "Séminaire Bourbaki, 1960/1961", Benjamin (1966)
,[33] L2 estimates and existence theorems for the ∂ operator, Acta Math. 113 (1965) 89 | DOI
,[34] The geometry of moduli spaces of sheaves, Cambridge Univ. Press (2010) | DOI
, ,[35] Differential geometry of complex vector bundles, 15, Princeton Univ. Press (1987) | DOI
,[36] Quotients by finite equivalence relations, from: "Current developments in algebraic geometry" (editors L Caporaso, J McKernan, M Mustaţă, M Popa), Math. Sci. Res. Inst. Publ. 59, Cambridge Univ. Press (2012) 227
,[37] Semistable sheaves in positive characteristic, Ann. of Math. 159 (2004) 251 | DOI
,[38] Fibré déterminant et courbes de saut sur les surfaces algébriques, from: "Complex projective geometry" (editors G Ellingsrud, C Peskine, G Sacchiero, S A Strømme), Lond. Math. Soc. Lect. Note Ser. 179, Cambridge Univ. Press (1992) 213 | DOI
,[39] Algebraic geometric interpretation of Donaldson’s polynomial invariants, J. Differential Geom. 37 (1993) 417 | DOI
,[40] Moduli spaces of simple bundles and Hermitian–Einstein connections, Math. Ann. 276 (1987) 663 | DOI
, ,[41] The Kobayashi–Hitchin correspondence, World Sci. (1995) | DOI
, ,[42] Openness of a family of torsion free sheaves, J. Math. Kyoto Univ. 16 (1976) 627 | DOI
,[43] On boundedness of families of torsion free sheaves, J. Math. Kyoto Univ. 21 (1981) 673 | DOI
,[44] Semistable sheaves on projective varieties and their restriction to curves, Math. Ann. 258 (1982) 213 | DOI
, ,[45] Kuranishi family of vector bundles and algebraic description of the moduli space of Einstein–Hermitian connections, Publ. Res. Inst. Math. Sci. 25 (1989) 301 | DOI
,[46] Comparison of the Donaldson polynomial invariants with their algebro-geometric analogues, Topology 32 (1993) 449 | DOI
,[47] Energy identity for stationary Yang Mills, Invent. Math. 216 (2019) 847 | DOI
, ,[48] Compactness of the moduli space of Yang–Mills connections in higher dimensions, J. Math. Soc. Japan 40 (1988) 383 | DOI
,[49] Vector bundles on complex projective spaces, 3, Birkhäuser (1980) | DOI
, , ,[50] Moduli spaces of slope-semistable pure sheaves, preprint (2021)
,[51] A direct method for minimizing the Yang–Mills functional over 4–manifolds, Comm. Math. Phys. 86 (1982) 515 | DOI
,[52] Global solvability and regularity for ∂ on an annulus between two weakly pseudoconvex domains, Trans. Amer. Math. Soc. 291 (1985) 255 | DOI
,[53] The closed range property for ∂ on domains with pseudoconcave boundary, from: "Complex analysis" (editors P Ebenfelt, N Hungerbühler, J J Kohn, N Mok, E J Straube), Birkhäuser (2010) 307 | DOI
,[54] Asymptotics of the Yang–Mills flow for holomorphic vector bundles over Kähler manifolds : the canonical structure of the limit, J. Reine Angew. Math. 706 (2015) 123 | DOI
,[55] Analytic cycles, Bott–Chern forms, and singular sets for the Yang–Mills flow on Kähler manifolds, Adv. Math. 279 (2015) 501 | DOI
, ,[56] A singularity removal theorem for Yang–Mills fields in higher dimensions, J. Amer. Math. Soc. 17 (2004) 557 | DOI
, ,[57] Gauge theory and calibrated geometry, I, Ann. of Math. 151 (2000) 193 | DOI
,[58] Compactification of the moduli spaces of vortices and coupled vortices, J. Reine Angew. Math. 553 (2002) 17 | DOI
, ,[59] A priori estimates for Yang–Mills fields, unpublished manuscript
,[60] Connections with Lp bounds on curvature, Comm. Math. Phys. 83 (1982) 31 | DOI
,[61] Removable singularities in Yang–Mills fields, Comm. Math. Phys. 83 (1982) 11 | DOI
,[62] On the existence of Hermitian–Yang–Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986) | DOI
, ,[63] Uhlenbeck compactness, Eur. Math. Soc. (2004) | DOI
,[64] The uniqueness of tangent cones for Yang–Mills connections with isolated singularities, Adv. Math. 180 (2003) 648 | DOI
,Cité par Sources :