Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that the –snowflake of any finite-dimensional normed space embeds into a Hilbert space with quadratic average distortion
We deduce from this (optimal) statement that if an –vertex expander embeds with average distortion into , then necessarily , which is sharp by the work of Johnson, Lindenstrauss and Schechtman (1987). This improves over the previously best-known bound of Linial, London and Rabinovich (1995), strengthens a theorem of Matoušek (1996) which resolved questions of Johnson and Lindenstrauss (1982), Bourgain (1985) and Arias-de-Reyna and Rodríguez-Piazza (1992), and answers negatively a question that was posed (for algorithmic purposes) by Andoni, Nguyen, Nikolov, Razenshteyn and Waingarten (2016).
Naor, Assaf 1
@article{GT_2021_25_4_a0, author = {Naor, Assaf}, title = {An average {John} theorem}, journal = {Geometry & topology}, pages = {1631--1717}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2021}, doi = {10.2140/gt.2021.25.1631}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1631/} }
Naor, Assaf. An average John theorem. Geometry & topology, Tome 25 (2021) no. 4, pp. 1631-1717. doi : 10.2140/gt.2021.25.1631. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1631/
[1] Advances in metric embedding theory, Adv. Math. 228 (2011) 3026 | DOI
, , ,[2] Embeddability of snowflaked metrics with applications to the nonlinear geometry of the spaces Lp and lp for 0 p ∞, J. Geom. Anal. 25 (2015) 1 | DOI
, ,[3] The diameter of SLn(Fq), preprint (2019)
,[4] Geometrical realization of set systems and probabilistic communication complexity, from: "26th Annual Symposium on Foundations of Computer Science", IEEE (1985) 277 | DOI
, , ,[5] Random Cayley graphs and expanders, Random Structures Algorithms 5 (1994) 271 | DOI
, ,[6] The probabilistic method, Wiley (1992)
, ,[7] Approximate nearest neighbor search in high dimensions, from: "Proceedings of the International Congress of Mathematicians, IV" (editors B Sirakov, P N de Souza, M Viana), World Sci. (2018) 3287
, , ,[8] Snowflake universality of Wasserstein spaces, Ann. Sci. École Norm. Sup. 51 (2018) 657 | DOI
, , ,[9] Complex interpolation, Hölder homeomorphisms, and algorithmic applications, in preparation
, , , , ,[10] Spectral partitioning of metric spaces, in preparation
, , , , ,[11] Data-dependent hashing via nonlinear spectral gaps, from: "Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing" (editors I Diakonikolas, D Kempe, M Henzinger), ACM (2018) 787 | DOI
, , , , ,[12] Hölder homeomorphisms and approximate nearest neighbors, from: "59th Annual IEEE Symposium on Foundations of Computer Science" (editor M Thorup), IEEE (2018) 159 | DOI
, , , , ,[13] Approximate near neighbors for general symmetric norms, from: "Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing" (editors H Hatami, P McKenzie, V King), ACM (2017) 902 | DOI
, , , , ,[14] On the complexity of matrix reduction over finite fields, Adv. Appl. Math. 39 (2007) 428 | DOI
, , ,[15] Finite metric spaces needing high dimension for Lipschitz embeddings in Banach spaces, Israel J. Math. 79 (1992) 103 | DOI
, ,[16] Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. 57 (1976) 147 | DOI
,[17] The Euclidean distortion of the lamplighter group, Discrete Comput. Geom. 44 (2010) 55 | DOI
, , ,[18] Property (T) and rigidity for actions on Banach spaces, Acta Math. 198 (2007) 57 | DOI
, , , ,[19] Markov chains, Riesz transforms and Lipschitz maps, Geom. Funct. Anal. 2 (1992) 137 | DOI
,[20] The Ribe programme, from: "Séminaire Bourbaki, 2011/2012", Astérisque 352, Soc. Math. France (2013) 147
,[21] Sharp uniform convexity and smoothness inequalities for trace norms, Invent. Math. 115 (1994) 463 | DOI
, , ,[22] Théorie des opérations linéaires, 1, Inst. Mat. Polish Acad. Sci. (1932)
,[23] On metric Ramsey-type phenomena, Ann. of Math. 162 (2005) 643 | DOI
, , , ,[24] Affine approximation of Lipschitz functions and nonlinear quotients, Geom. Funct. Anal. 9 (1999) 1092 | DOI
, , , , ,[25] Quantitative nonlinear embeddings into Lebesgue sequence spaces, J. Topol. Anal. 8 (2016) 117 | DOI
,[26] Geometric nonlinear functional analysis, I, 48, Amer. Math. Soc. (2000) | DOI
, ,[27] Interpolation spaces: an introduction, 223, Springer (1976) | DOI
, ,[28] On Lipschitz embedding of finite metric spaces in Hilbert space, Israel J. Math. 52 (1985) 46 | DOI
,[29] The metrical interpretation of superreflexivity in Banach spaces, Israel J. Math. 56 (1986) 222 | DOI
,[30] On type of metric spaces, Trans. Amer. Math. Soc. 294 (1986) 295 | DOI
, , ,[31] Fonctions de type positif sur les espaces Lp, C. R. Acad. Sci. Paris 261 (1965) 2153
, , ,[32] Methods of geometric analysis in extension and trace problems, II, 103, Birkhäuser (2012) | DOI
, ,[33] Stability of the Lipschitz extension property under metric transforms, Geom. Funct. Anal. 12 (2002) 73 | DOI
, ,[34] Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964) 113 | DOI
,[35] On uniform homeomorphisms of the unit spheres of certain Banach lattices, Pacific J. Math. 168 (1995) 11 | DOI
,[36] A lower bound for the smallest eigenvalue of the Laplacian, from: "Problems in analysis" (editor R C Gunning), Princeton Univ. Press (1970) 195 | DOI
,[37] Sphere equivalence, property H, and Banach expanders, Studia Math. 233 (2016) 67 | DOI
,[38] Measure theoretic zero sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings, Publ. Dép. Math. (Lyon) 10 (1973) 29
,[39] Laplacians of graphs and Cheeger’s inequalities, from: "Combinatorics : Paul Erdős is eighty, II" (editors D Miklós, V T Sós, T Szőnyi), Bolyai Soc. Math. Stud. 2, János Bolyai Math. Soc. (1996) 157
,[40] Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936) 396 | DOI
,[41] Complex interpolation spaces, a discrete definition and reiteration, Indiana Univ. Math. J. 27 (1978) 1005 | DOI
,[42] Interpolation of uniformly convex Banach spaces, Proc. Amer. Math. Soc. 84 (1982) 555 | DOI
, ,[43] Homéomorphismes uniformes entre les sphères unité des espaces d’interpolation, Canad. Math. Bull. 38 (1995) 286 | DOI
,[44] Fractured fractals and broken dreams, 7, Oxford Univ. Press (1997)
, ,[45] Uniform convexity in factor and conjugate spaces, Ann. of Math. 45 (1944) 375 | DOI
,[46] On the nonexistence of uniform homeomorphisms between Lp–spaces, Ark. Mat. 8 (1969) 103 | DOI
,[47] Banach spaces which can be given an equivalent uniformly convex norm, Israel J. Math. 13 (1972) 281 | DOI
,[48] Uniform homeomorphisms between Banach spaces, from: "Séminaire Maurey–Schwartz, 1975/1976 : Espaces, , applications radonifiantes et géométrie des espaces de Banach", Cent. Math. École Polytech. (1976)
,[49] On coarse and uniform embeddings into Lp, in preparation
, ,[50] On the moduli of convexity and smoothness, Studia Math. 56 (1976) 121 | DOI
,[51] Séries aléatoires dans les espaces uniformément convexes ou uniformément lisses, C. R. Acad. Sci. Paris Sér. A 279 (1974) 611
, ,[52] Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo 22 (1906) 1 | DOI
,[53] Abstrakte Funktionen und lineare Operatoren, Mat. Sb. 4 (1938) 235
,[54] Diameters, distortion, and eigenvalues, European J. Combin. 33 (2012) 1574 | DOI
, ,[55] Spaces and questions, from: "Visions in Mathematics: GAFA 2000, I" (editors N Alon, J Bourgain, A Connes, M Gromov, V Milman) (2000) 118 | DOI
,[56] Random walk in random groups, Geom. Funct. Anal. 13 (2003) 73 | DOI
,[57] Every connected regular graph of even degree is a Schreier coset graph, J. Combinatorial Theory Ser. B 22 (1977) 227 | DOI
,[58] On the uniform convexity of Lp and lp, Ark. Mat. 3 (1956) 239 | DOI
,[59] Algebraic topology, Cambridge Univ. Press (2002)
,[60] Lectures on analysis on metric spaces, Springer (2001) | DOI
,[61] Ultraproducts in Banach space theory, J. Reine Angew. Math. 313 (1980) 72 | DOI
,[62] On the distribution of distances in homogeneous compact metric spaces, Topology Appl. 193 (2015) 97 | DOI
, ,[63] Expander graphs and their applications, Bull. Amer. Math. Soc. 43 (2006) 439 | DOI
, , ,[64] Combinatorial harmonic maps and discrete-group actions on Hadamard spaces, Geom. Dedicata 114 (2005) 147 | DOI
, ,[65] Super-reflexive Banach spaces, Canad. J. Math. 24 (1972) 896 | DOI
,[66] Extremum problems with inequalities as subsidiary conditions, from: "Studies and essays presented to R Courant on his 60th birthday" (editor K O Friedrichs), Interscience (1948) 187
,[67] Extensions of Lipschitz mappings into a Hilbert space, from: "Conference in modern analysis and probability" (editors R Beals, A Beck, A Bellow, A Hajian), Contemp. Math. 26, Amer. Math. Soc. (1984) 189 | DOI
, ,[68] Basic concepts in the geometry of Banach spaces, from: "Handbook of the geometry of Banach spaces, I" (editors W B Johnson, J Lindenstrauss), North-Holland (2001) 1 | DOI
, ,[69] On Lipschitz embedding of finite metric spaces in low-dimensional normed spaces, from: "Geometrical aspects of functional analysis" (editors J Lindenstrauss, V D Milman), Lecture Notes in Math. 1267, Springer (1987) 177 | DOI
, , ,[70] Lp–distortion and p–spectral gap of finite graphs, Bull. Lond. Math. Soc. 46 (2014) 329 | DOI
, ,[71] The nonlinear geometry of Banach spaces, Rev. Mat. Complut. 21 (2008) 7 | DOI
,[72] Kazhdan constants for SLn(Z), Int. J. Algebra Comput. 15 (2005) 971 | DOI
,[73] Nonembeddability theorems via Fourier analysis, Math. Ann. 334 (2006) 821 | DOI
, ,[74] Über die zusammenziehenden und Lipschitzchen Transformationen, Fund. Math. 22 (1934) 77 | DOI
,[75] CAT(0) spaces and expanders, Math. Z. 271 (2012) 343 | DOI
,[76] Plane with A∞–weighted metric not bi-Lipschitz embeddable to RN, Bull. Lond. Math. Soc. 34 (2002) 667 | DOI
,[77] Banach space actions and L2–spectral gap, Anal. PDE 14 (2021) 45 | DOI
, ,[78] Un renforcement de la propriété (T), Duke Math. J. 143 (2008) 559 | DOI
,[79] Propriété (T) renforcée banachique et transformation de Fourier rapide, J. Topol. Anal. 1 (2009) 191 | DOI
,[80] Extending Lipschitz functions via random metric partitions, Invent. Math. 160 (2005) 59 | DOI
, ,[81] On the modulus of smoothness and divergent series in Banach spaces, Michigan Math. J. 10 (1963) 241 | DOI
,[82] Classical Banach spaces, I : Sequence spaces, 92, Springer (1977)
, ,[83] Classical Banach spaces, II : Function spaces, 97, Springer (1979)
, ,[84] The geometry of graphs and some of its algorithmic applications, Combinatorica 15 (1995) 215 | DOI
, , ,[85] Least-distortion Euclidean embeddings of graphs : products of cycles and expanders, J. Combin. Theory Ser. B 79 (2000) 157 | DOI
, ,[86] Girth and Euclidean distortion, Geom. Funct. Anal. 12 (2002) 380 | DOI
, , ,[87] Une construction d’espaces d’interpolation, C. R. Acad. Sci. Paris 251 (1960) 1853
,[88] On Lipschitz mappings between Fréchet spaces, Studia Math. 41 (1972) 225 | DOI
,[89] Extension of Lipschitz mappings on metric trees, Comment. Math. Univ. Carolin. 31 (1990) 99
,[90] Note on bi-Lipschitz embeddings into normed spaces, Comment. Math. Univ. Carolin. 33 (1992) 51
,[91] On the distortion required for embedding finite metric spaces into normed spaces, Israel J. Math. 93 (1996) 333 | DOI
,[92] On embedding expanders into lp spaces, Israel J. Math. 102 (1997) 189 | DOI
,[93] Lectures on discrete geometry, 212, Springer (2002) | DOI
,[94] Une remarque sur l’homéomorphie des champs fonctionels, Studia Math. 1 (1929) 83 | DOI
,[95] Euclidean quotients of finite metric spaces, Adv. Math. 189 (2004) 451 | DOI
, ,[96] Metric cotype, Ann. of Math. 168 (2008) 247 | DOI
, ,[97] Markov convexity and local rigidity of distorted metrics, J. Eur. Math. Soc. 15 (2013) 287 | DOI
, ,[98] Spectral calculus and Lipschitz extension for barycentric metric spaces, Anal. Geom. Metr. Spaces 1 (2013) 163 | DOI
, ,[99] Nonlinear spectral calculus and super-expanders, Publ. Math. Inst. Hautes Études Sci. 119 (2014) 1 | DOI
, ,[100] Expanders with respect to Hadamard spaces and random graphs, Duke Math. J. 164 (2015) 1471 | DOI
, ,[101] On some criteria for the regularity of spaces of the type (B), C. R. (Dokl.) Acad. Sci. URSS 20 (1938) 243
,[102] On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964) 275 | DOI
,[103] Sphere equivalence, Banach expanders, and extrapolation, Int. Math. Res. Not. 2015 (2015) 4372 | DOI
,[104] On the extension of Lipschitz, Lipschitz–Hölder continuous, and monotone functions, Bull. Amer. Math. Soc. 76 (1970) 334 | DOI
,[105] An introduction to the Ribe program, Japan. J. Math. 7 (2012) 167 | DOI
,[106] On the Banach-space-valued Azuma inequality and small-set isoperimetry of Alon–Roichman graphs, Combin. Probab. Comput. 21 (2012) 623 | DOI
,[107] Comparison of metric spectral gaps, Anal. Geom. Metr. Spaces 2 (2014) 1
,[108] Uniform nonextendability from nets, C. R. Math. Acad. Sci. Paris 353 (2015) 991 | DOI
,[109] Discrete Riesz transforms and sharp metric Xp inequalities, Ann. of Math. 184 (2016) 991 | DOI
,[110] A spectral gap precludes low-dimensional embeddings, from: "33rd International Symposium on Computational Geometry" (editors B Aronov, M J Katz), Leibniz Int. Proc. Inform. 77, Schloss Dagstuhl (2017) | DOI
,[111] Metric dimension reduction : a snapshot of the Ribe program, from: "Proceedings of the International Congress of Mathematicians, I" (editors B Sirakov, P N de Souza, M Viana), World Sci. (2018) 759
,[112] Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces, Duke Math. J. 134 (2006) 165 | DOI
, , , ,[113] On Lipschitz extension from finite subsets, Israel J. Math. 219 (2017) 115 | DOI
, ,[114] Quasisymmetric embeddings, the observable diameter, and expansion properties of graphs, J. Funct. Anal. 227 (2005) 273 | DOI
, , ,[115] Metric Xp inequalities, Forum Math. Pi 4 (2016) | DOI
, ,[116] Poincaré inequalities, embeddings, and wild groups, Compos. Math. 147 (2011) 1546 | DOI
, ,[117] Hard metrics from Cayley graphs of abelian groups, Theory Comput. 5 (2009) 125 | DOI
, ,[118] The distortion problem, Acta Math. 173 (1994) 259 | DOI
, ,[119] Metric embeddings: bilipschitz and coarse embeddings into Banach spaces, 49, de Gruyter (2013) | DOI
,[120] A note on non-amenability of B(lp) for p = 1,2, Int. J. Math. 15 (2004) 557 | DOI
,[121] A proof that every uniformly convex space is reflexive, Duke Math. J. 5 (1939) 249 | DOI
,[122] Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975) 326 | DOI
,[123] Some applications of the complex interpolation method to Banach lattices, J. Analyse Math. 35 (1979) 264 | DOI
,[124] Complex interpolation between Hilbert, Banach and operator spaces, 978, Amer. Math. Soc. (2010) | DOI
,[125] On average distortion of embedding metrics into the line, Discrete Comput. Geom. 39 (2008) 720 | DOI
,[126] On ultrapowers of non commutative Lp spaces, J. Operator Theory 48 (2002) 41
,[127] On uniformly homeomorphic normed spaces, Ark. Mat. 14 (1976) 237 | DOI
,[128] Hölder estimates for the noncommutative Mazur maps, Arch. Math. (Basel) 104 (2015) 37 | DOI
,[129] Sur les maxima des formes bilinéaires et sur les fonctionnelles linéaires, Acta Math. 49 (1927) 465 | DOI
,[130] Navigating in the Cayley graphs of SLN(Z) and SLN(Fp), Geom. Dedicata 113 (2005) 215 | DOI
,[131] Metric spaces and positive definite functions, Trans. Amer. Math. Soc. 44 (1938) 522 | DOI
,[132] Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956) 482 | DOI
,[133] Sur l’homologie des variétés algébriques réelles, from: "Differential and combinatorial topology" (editor S S Cairns), Princeton Univ. Press (1965) 255 | DOI
,[134] Convexity theorems generalizing those of M Riesz and Hadamard with some applications, Comm. Sém. Math. Univ. Lund 9 (1948) 1
,[135] Embeddings and extensions in analysis, 84, Springer (1975) | DOI
, ,Cité par Sources :