Extending fibrations of knot complements to ribbon disk complements
Geometry & topology, Tome 25 (2021) no. 3, pp. 1479-1550.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that if K is a fibered ribbon knot in S3 = B4 bounding a ribbon disk D, then, given an extra transversality condition, the fibration on S3 ν(K) extends to a fibration of B4 ν(D). This partially answers a question of Casson and Gordon. In particular, we show the fibration always extends when D has exactly two local minima. More generally, we construct movies of singular fibrations on 4–manifolds and describe a sufficient property of a movie to imply the underlying 4–manifold is fibered over S1.

DOI : 10.2140/gt.2021.25.1479
Keywords: fibered, ribbon, knot, slice, topology, 4-manifold

Miller, Maggie 1

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, United States
@article{GT_2021_25_3_a4,
     author = {Miller, Maggie},
     title = {Extending fibrations of knot complements to ribbon disk complements},
     journal = {Geometry & topology},
     pages = {1479--1550},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2021},
     doi = {10.2140/gt.2021.25.1479},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1479/}
}
TY  - JOUR
AU  - Miller, Maggie
TI  - Extending fibrations of knot complements to ribbon disk complements
JO  - Geometry & topology
PY  - 2021
SP  - 1479
EP  - 1550
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1479/
DO  - 10.2140/gt.2021.25.1479
ID  - GT_2021_25_3_a4
ER  - 
%0 Journal Article
%A Miller, Maggie
%T Extending fibrations of knot complements to ribbon disk complements
%J Geometry & topology
%D 2021
%P 1479-1550
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1479/
%R 10.2140/gt.2021.25.1479
%F GT_2021_25_3_a4
Miller, Maggie. Extending fibrations of knot complements to ribbon disk complements. Geometry & topology, Tome 25 (2021) no. 3, pp. 1479-1550. doi : 10.2140/gt.2021.25.1479. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1479/

[1] M Borodzik, A Némethi, A Ranicki, Morse theory for manifolds with boundary, Algebr. Geom. Topol. 16 (2016) 971 | DOI

[2] G Burde, H Zieschang, M Heusener, Knots, 5, de Gruyter (2014) | DOI

[3] A J Casson, C M Gordon, A loop theorem for duality spaces and fibred ribbon knots, Invent. Math. 74 (1983) 119 | DOI

[4] A J Casson, C M Gordon, Cobordism of classical knots, from: "À la recherche de la topologie perdue" (editors L Guillou, A Marin), Progr. Math. 62, Birkhäuser (1986) 181

[5] T Cochran, Ribbon knots in S4, J. Lond. Math. Soc. 28 (1983) 563 | DOI

[6] T D Cochran, C W Davis, Counterexamples to Kauffman’s conjectures on slice knots, Adv. Math. 274 (2015) 263 | DOI

[7] R H Fox, A quick trip through knot theory, from: "Topology of –manifolds and related topics" (editor M K Fort Jr.), Prentice-Hall (1962) 120

[8] R H Fox, Some problems in knot theory, from: "Topology of –manifolds and related topics" (editor M K Fort Jr.), Prentice-Hall (1962) 168

[9] M H Freedman, F Quinn, Topology of 4–manifolds, 39, Princeton Univ. Press (1990)

[10] D Gabai, Detecting fibred links in S3, Comment. Math. Helv. 61 (1986) 519 | DOI

[11] J Hillman, Algebraic invariants of links, 32, World Sci. (2002) | DOI

[12] M Hirasawa, K Murasugi, Genera and fibredness of Montesinos knots, Pacific J. Math. 225 (2006) 53 | DOI

[13] A Kawauchi, A survey of knot theory, Birkhäuser (1996) | DOI

[14] R Kirby, Problems in low-dimensional topology, from: "Geometric topology" (editor W H Kazez), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 35

[15] C Lamm, Symmetric union presentations for 2–bridge ribbon knots, preprint (2006)

[16] C Lamm, The search for non-symmetric ribbon knots, preprint (2017)

[17] K Larson, J Meier, Fibered ribbon disks, J. Knot Theory Ramifications 24 (2015) | DOI

[18] J Levine, Unknotting spheres in codimension two, Topology 4 (1965) 9 | DOI

[19] J Levine, An algebraic classification of some knots of codimension two, Comment. Math. Helv. 45 (1970) 185 | DOI

[20] P Lisca, Lens spaces, rational balls and the ribbon conjecture, Geom. Topol. 11 (2007) 429 | DOI

[21] C Livingston, J Meier, Doubly slice knots with low crossing number, New York J. Math. 21 (2015) 1007

[22] C Livingston, A H Moore, KnotInfo: table of knot invariants, electronic reference (2004–)

[23] J Meier, A Zupan, Generalized square knots and homotopy 4–spheres, preprint (2019)

[24] J Milnor, Singular points of complex hypersurfaces, 61, Princeton Univ. Press (1968)

[25] K Miyazaki, A note on genera of band sums that are fibered, J. Knot Theory Ramifications 27 (2018) | DOI

[26] C D Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Ann. of Math. 66 (1957) 1 | DOI

[27] M Scharlemann, Smooth spheres in R4 with four critical points are standard, Invent. Math. 79 (1985) 125 | DOI

[28] M Scharlemann, A Thompson, Link genus and the Conway moves, Comment. Math. Helv. 64 (1989) 527 | DOI

[29] J Stallings, On topologically unknotted spheres, Ann. of Math. 77 (1963) 490 | DOI

[30] S Suzuki, Knotting problems of 2–spheres in 4–sphere, Math. Sem. Notes Kobe Univ. 4 (1976) 241

[31] E C Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965) 471 | DOI

Cité par Sources :