Quasipositive links and Stein surfaces
Geometry & topology, Tome 25 (2021) no. 3, pp. 1441-1477.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the generalization of quasipositive links from the 3–sphere to arbitrary closed, orientable 3–manifolds. Our main result shows that the boundary of any smooth, properly embedded complex curve in a Stein domain is a quasipositive link. This generalizes a result due to Boileau and Orevkov, and it provides the first half of a topological characterization of links in 3–manifolds which bound complex curves in a Stein filling. Our arguments replace pseudoholomorphic curve techniques with a study of characteristic and open book foliations on surfaces in 3– and 4–manifolds.

DOI : 10.2140/gt.2021.25.1441
Classification : 57R17, 32Q28, 57M25
Keywords: Stein surfaces, complex curves, contact structures, open books, braids, quasipositive links, transverse links

Hayden, Kyle 1

1 Columbia University, New York, NY, United States
@article{GT_2021_25_3_a3,
     author = {Hayden, Kyle},
     title = {Quasipositive links and {Stein} surfaces},
     journal = {Geometry & topology},
     pages = {1441--1477},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2021},
     doi = {10.2140/gt.2021.25.1441},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1441/}
}
TY  - JOUR
AU  - Hayden, Kyle
TI  - Quasipositive links and Stein surfaces
JO  - Geometry & topology
PY  - 2021
SP  - 1441
EP  - 1477
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1441/
DO  - 10.2140/gt.2021.25.1441
ID  - GT_2021_25_3_a3
ER  - 
%0 Journal Article
%A Hayden, Kyle
%T Quasipositive links and Stein surfaces
%J Geometry & topology
%D 2021
%P 1441-1477
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1441/
%R 10.2140/gt.2021.25.1441
%F GT_2021_25_3_a3
Hayden, Kyle. Quasipositive links and Stein surfaces. Geometry & topology, Tome 25 (2021) no. 3, pp. 1441-1477. doi : 10.2140/gt.2021.25.1441. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1441/

[1] J A Baldwin, D S Vela-Vick, V Vértesi, On the equivalence of Legendrian and transverse invariants in knot Floer homology, Geom. Topol. 17 (2013) 925 | DOI

[2] I Baykur, J Etnyre, M Hedden, K Kawamuro, J V Horn-Morris, Contact and symplectic geometry and the mapping class groups, report of 2nd SQuaRE meeting (2015)

[3] D Bennequin, Entrelacements et équations de Pfaff, from: "Third Schnepfenried geometry conference, I" (editors D Bernard, T Hangan, R Lutz), Astérisque 107, Soc. Math. France (1983) 87

[4] J S Birman, E Finkelstein, Studying surfaces via closed braids, J. Knot Theory Ramifications 7 (1998) 267 | DOI

[5] J S Birman, W W Menasco, Stabilization in the braid groups, II : Transversal simplicity of knots, Geom. Topol. 10 (2006) 1425 | DOI

[6] M Boileau, S Orevkov, Quasi-positivité d’une courbe analytique dans une boule pseudo-convexe, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 825 | DOI

[7] K Cieliebak, Y Eliashberg, From Stein to Weinstein and back, 59, Amer. Math. Soc. (2012) | DOI

[8] Y Eliashberg, Topological characterization of Stein manifolds of dimension > 2, Int. J. Math. 1 (1990) 29 | DOI

[9] J B Etnyre, Lectures on open book decompositions and contact structures, from: "Floer homology, gauge theory, and low-dimensional topology" (editors D A Ellwood, P S Ozsváth, A I Stipsicz, Z Szabó), Clay Math. Proc. 5, Amer. Math. Soc. (2006) 103

[10] J B Etnyre, J Van Horn-Morris, Monoids in the mapping class group, from: "Interactions between low-dimensional topology and mapping class groups" (editors R I Baykur, J Etnyre, U Hamenstädt), Geom. Topol. Monogr. 19, Geom. Topol. (2015) 319 | DOI

[11] B Farb, D Margalit, A primer on mapping class groups, 49, Princeton Univ. Press (2012)

[12] T Fiedler, Complex plane curves in the ball, Invent. Math. 95 (1989) 479 | DOI

[13] D Gabai, The Murasugi sum is a natural geometric operation, from: "Low-dimensional topology" (editor S J Lomonaco Jr.), Contemp. Math. 20, Amer. Math. Soc. (1983) 131 | DOI

[14] S Gadgil, D Kulkarni, Relative symplectic caps, 4–genus and fibered knots, Proc. Indian Acad. Sci. Math. Sci. 126 (2016) 261 | DOI

[15] H Geiges, An introduction to contact topology, 109, Cambridge Univ. Press (2008) | DOI

[16] E Giroux, Géométrie de contact : de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians, II" (editor T Li), Higher Ed. (2002) 405

[17] R E Gompf, Handlebody construction of Stein surfaces, Ann. of Math. 148 (1998) 619 | DOI

[18] M Hedden, Knot theory and algebraic curves in subcritical Stein domains, in preparation

[19] K Honda, W H Kazez, G Matić, The contact invariant in sutured Floer homology, Invent. Math. 176 (2009) 637 | DOI

[20] T Ito, K Kawamuro, Open book foliation, Geom. Topol. 18 (2014) 1581 | DOI

[21] T Ito, K Kawamuro, The defect of the Bennequin–Eliashberg inequality and Bennequin surfaces, Indiana Univ. Math. J. 68 (2019) 799 | DOI

[22] D Mcduff, Singularities and positivity of intersections of J–holomorphic curves, from: "Holomorphic curves in symplectic geometry" (editors M Audin, J Lafontaine), Progr. Math. 117, Birkhäuser (1994) 191 | DOI

[23] M J Micallef, B White, The structure of branch points in minimal surfaces and in pseudoholomorphic curves, Ann. of Math. 141 (1995) 35 | DOI

[24] J Milnor, Morse theory, 51, Princeton Univ. Press (1963)

[25] S Y Orevkov, V V Shevchishin, Markov theorem for transversal links, J. Knot Theory Ramifications 12 (2003) 905 | DOI

[26] E Pavelescu, Braiding knots in contact 3–manifolds, Pacific J. Math. 253 (2011) 475 | DOI

[27] L Rudolph, Algebraic functions and closed braids, Topology 22 (1983) 191 | DOI

[28] L Rudolph, A congruence between link polynomials, Math. Proc. Cambridge Philos. Soc. 107 (1990) 319 | DOI

[29] L Rudolph, Quasipositivity as an obstruction to sliceness, Bull. Amer. Math. Soc. 29 (1993) 51 | DOI

[30] S Smale, On gradient dynamical systems, Ann. of Math. 74 (1961) 199 | DOI

[31] W P Thurston, H E Winkelnkemper, On the existence of contact forms, Proc. Amer. Math. Soc. 52 (1975) 345 | DOI

[32] A Weinstein, Contact surgery and symplectic handlebodies, Hokkaido Math. J. 20 (1991) 241 | DOI

[33] N C Wrinkle, The Markov theorem for transverse knots, PhD thesis, Columbia University (2002)

[34] R Yamamoto, Open books supporting overtwisted contact structures and the Stallings twist, J. Math. Soc. Japan 59 (2007) 751 | DOI

Cité par Sources :