Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove a structure theorem for pseudo-Anosov flows restricted to Seifert-fibered pieces of three manifolds. The piece is called periodic if there is a Seifert fibration such that a regular fiber is freely homotopic, up to powers, to a closed orbit of the flow. A nonperiodic Seifert-fibered piece is called free. In a previous paper (Geom. Topol. 17 (2013) 1877–1954) we described the structure of a pseudo-Anosov flow restricted to a periodic piece up to isotopy along the flow. Here we consider free Seifert pieces. We show that, in a carefully defined neighborhood of the free piece, the pseudo-Anosov flow is orbitally equivalent to a hyperbolic blowup of a geodesic flow piece. A geodesic flow piece is a finite cover of the geodesic flow on a compact hyperbolic surface, usually with boundary. In the proof we introduce almost –convergence groups and prove a convergence theorem. We also introduce an alternative model for the geodesic flow of a hyperbolic surface that is suitable to prove these results, and we carefully define what is a hyperbolic blowup.
Barbot, Thierry 1 ; Fenley, Sérgio R 2
@article{GT_2021_25_3_a2, author = {Barbot, Thierry and Fenley, S\'ergio R}, title = {Free {Seifert} pieces of {pseudo-Anosov} flows}, journal = {Geometry & topology}, pages = {1331--1440}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2021}, doi = {10.2140/gt.2021.25.1331}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1331/} }
TY - JOUR AU - Barbot, Thierry AU - Fenley, Sérgio R TI - Free Seifert pieces of pseudo-Anosov flows JO - Geometry & topology PY - 2021 SP - 1331 EP - 1440 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1331/ DO - 10.2140/gt.2021.25.1331 ID - GT_2021_25_3_a2 ER -
Barbot, Thierry; Fenley, Sérgio R. Free Seifert pieces of pseudo-Anosov flows. Geometry & topology, Tome 25 (2021) no. 3, pp. 1331-1440. doi : 10.2140/gt.2021.25.1331. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1331/
[1] Geodesic flows on closed Riemannian manifolds of negative curvature, Tr. Mat. Inst. Steklova 90 (1967) 3
,[2] Caractérisation des flots d’Anosov en dimension 3 par leurs feuilletages faibles, Ergodic Theory Dynam. Systems 15 (1995) 247 | DOI
,[3] Flots d’Anosov sur les variétés graphées au sens de Waldhausen, Ann. Inst. Fourier (Grenoble) 46 (1996) 1451 | DOI
,[4] Pseudo-Anosov flows in toroidal manifolds, Geom. Topol. 17 (2013) 1877 | DOI
, ,[5] Classification and rigidity of totally periodic pseudo-Anosov flows in graph manifolds, Ergodic Theory Dynam. Systems 35 (2015) 1681 | DOI
, ,[6] Building Anosov flows on 3–manifolds, Geom. Topol. 21 (2017) 1837 | DOI
, , ,[7] Un exemple de flot d’Anosov transitif transverse à un tore et non conjugué à une suspension, Ergodic Theory Dynam. Systems 14 (1994) 633 | DOI
, ,[8] Essential laminations in Seifert-fibered spaces, Topology 32 (1993) 61 | DOI
,[9] Surfaces of section for expansive flows on three-manifolds, J. Math. Soc. Japan 47 (1995) 491 | DOI
,[10] The geometry of R–covered foliations, Geom. Topol. 4 (2000) 457 | DOI
,[11] Foliations with one-sided branching, Geom. Dedicata 96 (2003) 1 | DOI
,[12] Convergence groups and Seifert fibered 3–manifolds, Invent. Math. 118 (1994) 441 | DOI
, ,[13] Anosov flows in 3–manifolds, Ann. of Math. 139 (1994) 79 | DOI
,[14] The structure of branching in Anosov flows of 3–manifolds, Comment. Math. Helv. 73 (1998) 259 | DOI
,[15] Foliations with good geometry, J. Amer. Math. Soc. 12 (1999) 619 | DOI
,[16] Foliations, topology and geometry of 3–manifolds : R–covered foliations and transverse pseudo-Anosov flows, Comment. Math. Helv. 77 (2002) 415 | DOI
,[17] Pseudo-Anosov flows and incompressible tori, Geom. Dedicata 99 (2003) 61 | DOI
,[18] Diversified homotopic behavior of closed orbits of some R–covered Anosov flows, Ergodic Theory Dynam. Systems 36 (2016) 767 | DOI
,[19] Quasigeodesic flows in hyperbolic 3–manifolds, Topology 40 (2001) 503 | DOI
, ,[20] Anomalous Anosov flows, from: "Global theory of dynamical systems" (editors Z Nitecki, C Robinson), Lecture Notes in Math. 819, Springer (1980) 158 | DOI
, ,[21] The geometry of cross sections to flows, Topology 21 (1982) 353 | DOI
,[22] Transitive Anosov flows and pseudo-Anosov maps, Topology 22 (1983) 299 | DOI
,[23] Convergence groups are Fuchsian groups, Ann. of Math. 136 (1992) 447 | DOI
,[24] Pseudo-Anosov maps and surgery on fibred 2–bridge knots, Topology Appl. 37 (1990) 93 | DOI
, ,[25] Order trees and laminations of the plane, Math. Res. Lett. 4 (1997) 603 | DOI
, ,[26] Essential laminations in 3–manifolds, Ann. of Math. 130 (1989) 41 | DOI
, ,[27] Flots d’Anosov sur les 3–variétés fibrées en cercles, Ergodic Theory Dynam. Systems 4 (1984) 67 | DOI
,[28] Groupoïdes d’holonomie et classifiants, from: "Structure transverse des feuilletages" (editor J Pradines), Astérisque 116, Soc. Math. France (1984) 70
,[29] Anosov flows on new three manifolds, Invent. Math. 59 (1980) 95 | DOI
, ,[30] Introduction to the geometry of foliations, B : Foliations of codimension one, E3, Vieweg Sohn (1987) | DOI
, ,[31] 3–manifolds, 86, Princeton Univ. Press (1976)
,[32] Die Axiome der Quantität und die Lehre vom Mass, Ber. Verh. Sachs. Ges. Wiss. Leipzig 53 (1901) 1
,[33] Lectures on three-manifold topology, 43, Amer. Math. Soc. (1980)
,[34] Seifert fibered spaces in 3–manifolds, 220, Amer. Math. Soc. (1979) | DOI
, ,[35] Homotopy equivalences of 3–manifolds with boundaries, 761, Springer (1979) | DOI
,[36] The Nielsen realization problem, Ann. of Math. 117 (1983) 235 | DOI
,[37] Spaces of surface group representations, Invent. Math. 201 (2015) 669 | DOI
,[38] Dynamique lorentzienne et groupes de difféomorphismes du cercle, PhD thesis, École Normale Supérieure de Lyon (2014)
,[39] Dynamical systems and the homology norm of a 3–manifold, I : Efficient intersection of surfaces and flows, Duke Math. J. 65 (1992) 449 | DOI
,[40] Dynamical systems and the homology norm of a 3–manifold, II, Invent. Math. 107 (1992) 243 | DOI
,[41] Laminations and flows transverse to finite depth foliations, preprint (1996)
,[42] Group actions on order trees, Topology Appl. 115 (2001) 175 | DOI
, ,[43] Compact submanifolds of 3–manifolds, J. Lond. Math. Soc. 7 (1973) 246 | DOI
,[44] There are no fake Seifert fibre spaces with infinite π1, Ann. of Math. 117 (1983) 35 | DOI
,[45] Hyperbolic structures on 3–manifolds, II : Surface groups and 3–manifolds which fiber over the circle, preprint (1986)
,[46] On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988) 417 | DOI
,[47] Three manifolds, foliations and circles, II: The transverse asymptotic geometry of foliations, preprint (1998)
,[48] Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math. 391 (1988) 1 | DOI
,Cité par Sources :