Free Seifert pieces of pseudo-Anosov flows
Geometry & topology, Tome 25 (2021) no. 3, pp. 1331-1440.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove a structure theorem for pseudo-Anosov flows restricted to Seifert-fibered pieces of three manifolds. The piece is called periodic if there is a Seifert fibration such that a regular fiber is freely homotopic, up to powers, to a closed orbit of the flow. A nonperiodic Seifert-fibered piece is called free. In a previous paper (Geom. Topol. 17 (2013) 1877–1954) we described the structure of a pseudo-Anosov flow restricted to a periodic piece up to isotopy along the flow. Here we consider free Seifert pieces. We show that, in a carefully defined neighborhood of the free piece, the pseudo-Anosov flow is orbitally equivalent to a hyperbolic blowup of a geodesic flow piece. A geodesic flow piece is a finite cover of the geodesic flow on a compact hyperbolic surface, usually with boundary. In the proof we introduce almost k–convergence groups and prove a convergence theorem. We also introduce an alternative model for the geodesic flow of a hyperbolic surface that is suitable to prove these results, and we carefully define what is a hyperbolic blowup.

DOI : 10.2140/gt.2021.25.1331
Classification : 34D23, 37D05, 37D20, 37D50, 57R30, 34C25, 34C45, 37C10, 57M50, 57M60
Keywords: pseudo-Anosov flows, torus decomposition, Seifert pieces

Barbot, Thierry 1 ; Fenley, Sérgio R 2

1 LMA Avignon University, Campus Jeah-Henri Fabre, Avignon, France
2 Department of Mathematics, Florida State University, Tallahassee, FL, United States
@article{GT_2021_25_3_a2,
     author = {Barbot, Thierry and Fenley, S\'ergio R},
     title = {Free {Seifert} pieces of {pseudo-Anosov} flows},
     journal = {Geometry & topology},
     pages = {1331--1440},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2021},
     doi = {10.2140/gt.2021.25.1331},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1331/}
}
TY  - JOUR
AU  - Barbot, Thierry
AU  - Fenley, Sérgio R
TI  - Free Seifert pieces of pseudo-Anosov flows
JO  - Geometry & topology
PY  - 2021
SP  - 1331
EP  - 1440
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1331/
DO  - 10.2140/gt.2021.25.1331
ID  - GT_2021_25_3_a2
ER  - 
%0 Journal Article
%A Barbot, Thierry
%A Fenley, Sérgio R
%T Free Seifert pieces of pseudo-Anosov flows
%J Geometry & topology
%D 2021
%P 1331-1440
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1331/
%R 10.2140/gt.2021.25.1331
%F GT_2021_25_3_a2
Barbot, Thierry; Fenley, Sérgio R. Free Seifert pieces of pseudo-Anosov flows. Geometry & topology, Tome 25 (2021) no. 3, pp. 1331-1440. doi : 10.2140/gt.2021.25.1331. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1331/

[1] D V Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Tr. Mat. Inst. Steklova 90 (1967) 3

[2] T Barbot, Caractérisation des flots d’Anosov en dimension 3 par leurs feuilletages faibles, Ergodic Theory Dynam. Systems 15 (1995) 247 | DOI

[3] T Barbot, Flots d’Anosov sur les variétés graphées au sens de Waldhausen, Ann. Inst. Fourier (Grenoble) 46 (1996) 1451 | DOI

[4] T Barbot, S R Fenley, Pseudo-Anosov flows in toroidal manifolds, Geom. Topol. 17 (2013) 1877 | DOI

[5] T Barbot, S R Fenley, Classification and rigidity of totally periodic pseudo-Anosov flows in graph manifolds, Ergodic Theory Dynam. Systems 35 (2015) 1681 | DOI

[6] F Béguin, C Bonatti, B Yu, Building Anosov flows on 3–manifolds, Geom. Topol. 21 (2017) 1837 | DOI

[7] C Bonatti, R Langevin, Un exemple de flot d’Anosov transitif transverse à un tore et non conjugué à une suspension, Ergodic Theory Dynam. Systems 14 (1994) 633 | DOI

[8] M Brittenham, Essential laminations in Seifert-fibered spaces, Topology 32 (1993) 61 | DOI

[9] M Brunella, Surfaces of section for expansive flows on three-manifolds, J. Math. Soc. Japan 47 (1995) 491 | DOI

[10] D Calegari, The geometry of R–covered foliations, Geom. Topol. 4 (2000) 457 | DOI

[11] D Calegari, Foliations with one-sided branching, Geom. Dedicata 96 (2003) 1 | DOI

[12] A Casson, D Jungreis, Convergence groups and Seifert fibered 3–manifolds, Invent. Math. 118 (1994) 441 | DOI

[13] S R Fenley, Anosov flows in 3–manifolds, Ann. of Math. 139 (1994) 79 | DOI

[14] S R Fenley, The structure of branching in Anosov flows of 3–manifolds, Comment. Math. Helv. 73 (1998) 259 | DOI

[15] S R Fenley, Foliations with good geometry, J. Amer. Math. Soc. 12 (1999) 619 | DOI

[16] S R Fenley, Foliations, topology and geometry of 3–manifolds : R–covered foliations and transverse pseudo-Anosov flows, Comment. Math. Helv. 77 (2002) 415 | DOI

[17] S R Fenley, Pseudo-Anosov flows and incompressible tori, Geom. Dedicata 99 (2003) 61 | DOI

[18] S R Fenley, Diversified homotopic behavior of closed orbits of some R–covered Anosov flows, Ergodic Theory Dynam. Systems 36 (2016) 767 | DOI

[19] S Fenley, L Mosher, Quasigeodesic flows in hyperbolic 3–manifolds, Topology 40 (2001) 503 | DOI

[20] J Franks, B Williams, Anomalous Anosov flows, from: "Global theory of dynamical systems" (editors Z Nitecki, C Robinson), Lecture Notes in Math. 819, Springer (1980) 158 | DOI

[21] D Fried, The geometry of cross sections to flows, Topology 21 (1982) 353 | DOI

[22] D Fried, Transitive Anosov flows and pseudo-Anosov maps, Topology 22 (1983) 299 | DOI

[23] D Gabai, Convergence groups are Fuchsian groups, Ann. of Math. 136 (1992) 447 | DOI

[24] D Gabai, W H Kazez, Pseudo-Anosov maps and surgery on fibred 2–bridge knots, Topology Appl. 37 (1990) 93 | DOI

[25] D Gabai, W H Kazez, Order trees and laminations of the plane, Math. Res. Lett. 4 (1997) 603 | DOI

[26] D Gabai, U Oertel, Essential laminations in 3–manifolds, Ann. of Math. 130 (1989) 41 | DOI

[27] É Ghys, Flots d’Anosov sur les 3–variétés fibrées en cercles, Ergodic Theory Dynam. Systems 4 (1984) 67 | DOI

[28] A Haefliger, Groupoïdes d’holonomie et classifiants, from: "Structure transverse des feuilletages" (editor J Pradines), Astérisque 116, Soc. Math. France (1984) 70

[29] M Handel, W P Thurston, Anosov flows on new three manifolds, Invent. Math. 59 (1980) 95 | DOI

[30] G Hector, U Hirsch, Introduction to the geometry of foliations, B : Foliations of codimension one, E3, Vieweg Sohn (1987) | DOI

[31] J Hempel, 3–manifolds, 86, Princeton Univ. Press (1976)

[32] O Hölder, Die Axiome der Quantität und die Lehre vom Mass, Ber. Verh. Sachs. Ges. Wiss. Leipzig 53 (1901) 1

[33] W Jaco, Lectures on three-manifold topology, 43, Amer. Math. Soc. (1980)

[34] W H Jaco, P B Shalen, Seifert fibered spaces in 3–manifolds, 220, Amer. Math. Soc. (1979) | DOI

[35] K Johannson, Homotopy equivalences of 3–manifolds with boundaries, 761, Springer (1979) | DOI

[36] S P Kerckhoff, The Nielsen realization problem, Ann. of Math. 117 (1983) 235 | DOI

[37] K Mann, Spaces of surface group representations, Invent. Math. 201 (2015) 669 | DOI

[38] D Monclair, Dynamique lorentzienne et groupes de difféomorphismes du cercle, PhD thesis, École Normale Supérieure de Lyon (2014)

[39] L Mosher, Dynamical systems and the homology norm of a 3–manifold, I : Efficient intersection of surfaces and flows, Duke Math. J. 65 (1992) 449 | DOI

[40] L Mosher, Dynamical systems and the homology norm of a 3–manifold, II, Invent. Math. 107 (1992) 243 | DOI

[41] L Mosher, Laminations and flows transverse to finite depth foliations, preprint (1996)

[42] R Roberts, M Stein, Group actions on order trees, Topology Appl. 115 (2001) 175 | DOI

[43] G P Scott, Compact submanifolds of 3–manifolds, J. Lond. Math. Soc. 7 (1973) 246 | DOI

[44] P Scott, There are no fake Seifert fibre spaces with infinite π1, Ann. of Math. 117 (1983) 35 | DOI

[45] W P Thurston, Hyperbolic structures on 3–manifolds, II : Surface groups and 3–manifolds which fiber over the circle, preprint (1986)

[46] W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988) 417 | DOI

[47] W P Thurston, Three manifolds, foliations and circles, II: The transverse asymptotic geometry of foliations, preprint (1998)

[48] P Tukia, Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math. 391 (1988) 1 | DOI

Cité par Sources :