Reflection positivity and invertible topological phases
Geometry & topology, Tome 25 (2021) no. 3, pp. 1165-1330.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We implement an extended version of reflection positivity (Wick-rotated unitarity) for invertible topological quantum field theories and compute the abelian group of deformation classes using stable homotopy theory. We apply these field theory considerations to lattice systems, assuming the existence and validity of low-energy effective field theory approximations, and thereby produce a general formula for the group of symmetry protected topological (SPT) phases in terms of Thom’s bordism spectra; the only input is the dimension and symmetry type. We provide computations for fermionic systems in physically relevant dimensions. Other topics include symmetry in quantum field theories, a relativistic 10–fold way, the homotopy theory of relativistic free fermions, and a topological spin-statistics theorem.

DOI : 10.2140/gt.2021.25.1165
Classification : 55N22, 57R90, 81T45, 81T50, 82B99
Keywords: topological phases, invertible field theory, reflection positivity, symmetry protected topological phases, free fermions, topological field theory

Freed, Daniel S 1 ; Hopkins, Michael J 2

1 Department of Mathematics, University of Texas, Austin, TX, United States
2 Department of Mathematics, Harvard University, Cambridge, MA, United States
@article{GT_2021_25_3_a1,
     author = {Freed, Daniel S and Hopkins, Michael J},
     title = {Reflection positivity and invertible topological phases},
     journal = {Geometry & topology},
     pages = {1165--1330},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2021},
     doi = {10.2140/gt.2021.25.1165},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1165/}
}
TY  - JOUR
AU  - Freed, Daniel S
AU  - Hopkins, Michael J
TI  - Reflection positivity and invertible topological phases
JO  - Geometry & topology
PY  - 2021
SP  - 1165
EP  - 1330
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1165/
DO  - 10.2140/gt.2021.25.1165
ID  - GT_2021_25_3_a1
ER  - 
%0 Journal Article
%A Freed, Daniel S
%A Hopkins, Michael J
%T Reflection positivity and invertible topological phases
%J Geometry & topology
%D 2021
%P 1165-1330
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1165/
%R 10.2140/gt.2021.25.1165
%F GT_2021_25_3_a1
Freed, Daniel S; Hopkins, Michael J. Reflection positivity and invertible topological phases. Geometry & topology, Tome 25 (2021) no. 3, pp. 1165-1330. doi : 10.2140/gt.2021.25.1165. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1165/

[1] J F Adams, Prerequisites (on equivariant stable homotopy) for Carlsson’s lecture, from: "Algebraic topology" (editors I Madsen, B Oliver), Lecture Notes in Math. 1051, Springer (1984) 483 | DOI

[2] J F Adams, H R Margolis, Modules over the Steenrod algebra, Topology 10 (1971) 271 | DOI

[3] A Altland, M R Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B 55 (1997) 1142 | DOI

[4] D W Anderson, E H Brown Jr., F P Peterson, The structure of the Spin cobordism ring, Ann. of Math. 86 (1967) 271 | DOI

[5] D W Anderson, E H Brown Jr., F P Peterson, Pin cobordism and related topics, Comment. Math. Helv. 44 (1969) 462 | DOI

[6] M F Atiyah, K–theory and reality, Q. J. Math. 17 (1966) 367 | DOI

[7] M Atiyah, Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math. 68 (1988) 175 | DOI

[8] M F Atiyah, R Bott, A Shapiro, Clifford modules, Topology 3 (1964) 3 | DOI

[9] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry, I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43 | DOI

[10] M F Atiyah, I M Singer, Index theory for skew-adjoint Fredholm operators, Inst. Hautes Études Sci. Publ. Math. 37 (1969) 5 | DOI

[11] D Ayala, J Francis, The cobordism hypothesis, preprint (2017)

[12] J C Baez, J Dolan, Higher-dimensional algebra and topological quantum field theory, J. Math. Phys. 36 (1995) 6073 | DOI

[13] A Bahri, P Gilkey, The eta invariant, Pinc bordism, and equivariant Spinc bordism for cyclic 2–groups, Pacific J. Math. 128 (1987) 1 | DOI

[14] C Barwick, C Schommer-Pries, On the unicity of the homotopy theory of higher categories, preprint (2011)

[15] A Beaudry, J A Campbell, A guide for computing stable homotopy groups, from: "Topology and quantum theory in interaction" (editors D Ayala, D S Freed, R E Grady), Contemp. Math. 718, Amer. Math. Soc. (2018) 89 | DOI

[16] M Berg, C Dewitt-Morette, S Gwo, E Kramer, The Pin groups in physics : C, P and T, Rev. Math. Phys. 13 (2001) 953 | DOI

[17] G Birkhoff, M K Bennett, Felix Klein and his “Erlanger Programm”, from: "History and philosophy of modern mathematics" (editors W Aspray, P Kitcher), Minnesota Stud. Philos. Sci. 11, Univ. Minnesota Press (1988) 145

[18] M Bökstedt, I Madsen, The cobordism category and Waldhausen’s K–theory, from: "An alpine expedition through algebraic topology" (editors C Ausoni, K Hess, B Johnson, W Lück, J Scherer), Contemp. Math. 617, Amer. Math. Soc. (2014) 39 | DOI

[19] E H Brown Jr., M Comenetz, Pontrjagin duality for generalized homology and cohomology theories, Amer. J. Math. 98 (1976) 1 | DOI

[20] G Brumfiel, J Morgan, The Pontrjagin dual of 3–dimensional spin bordism, preprint (2016)

[21] U Bunke, Transgression of the index gerbe, Manuscripta Math. 109 (2002) 263 | DOI

[22] U Bunke, T Schick, Smooth K–theory, from: "From probability to geometry, II" (editors X Dai, R Léandre, X Ma, W Zhang), Astérisque 328, Soc. Math. France (2009) 45

[23] D Calaque, C Scheimbauer, A note on the (∞,n)–category of cobordisms, Algebr. Geom. Topol. 19 (2019) 533 | DOI

[24] J A Campbell, Homotopy theoretic classification of symmetry protected phases, preprint (2017)

[25] F Catanese, On the moduli spaces of surfaces of general type, J. Differential Geom. 19 (1984) 483 | DOI

[26] X Chen, Z C Gu, X G Wen, Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order, Phys. Rev. B 82 (2010) | DOI

[27] S Coleman, J Mandula, All possible symmetries of the S matrix, Phys. Rev. 159 (1967) 1251 | DOI

[28] C Cordova, D S Freed, H T Lam, N Seiberg, Anomalies in the space of coupling constants and their dynamical applications, I, SciPost Phys. 8 (2020)

[29] X Dai, D S Freed, η–invariants and determinant lines, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995) 585 | DOI

[30] P Deligne, Notes on spinors, from: "Quantum fields and strings: a course for mathematicians, I" (editors P Deligne, P Etingof, D S Freed, L C Jeffrey, D Kazhdan, J W Morgan, D R Morrison, E Witten), Amer. Math. Soc. (1999) 99

[31] P Deligne, J W Morgan, Notes on supersymmetry (following Joseph Bernstein), from: "Quantum fields and strings: a course for mathematicians, I" (editors P Deligne, P Etingof, D S Freed, L C Jeffrey, D Kazhdan, J W Morgan, D R Morrison, E Witten), Amer. Math. Soc. (1999) 41

[32] T Tom Dieck, Transformation groups and representation theory, 766, Springer (1979) | DOI

[33] F J Dyson, The threefold way: algebraic structure of symmetry groups and ensembles in quantum mechanics, J. Math. Phys. 3 (1962) 1199 | DOI

[34] J Ebert, A vanishing theorem for characteristic classes of odd-dimensional manifold bundles, J. Reine Angew. Math. 684 (2013) 1 | DOI

[35] L Fidkowski, X Chen, A Vishwanath, Non-abelian topological order on the surface of a 3D topological superconductor from an exactly solved model, Phys. Rev. X 3 (2013) | DOI

[36] L Fidkowski, A Kitaev, Effects of interactions on the topological classification of free fermion systems, Phys. Rev. B 81 (2010) | DOI

[37] L Fidkowski, A Kitaev, Topological phases of fermions in one dimension, Phys. Rev. B 83 (2011) | DOI

[38] D S Freed, Higher algebraic structures and quantization, Comm. Math. Phys. 159 (1994) 343 | DOI

[39] D S Freed, The cobordism hypothesis, Bull. Amer. Math. Soc. 50 (2013) 57 | DOI

[40] D S Freed, Anomalies and invertible field theories, from: "String-Math 2013" (editors R Donagi, M R Douglas, L Kamenova, M Roček), Proc. Sympos. Pure Math. 88, Amer. Math. Soc. (2014) 25 | DOI

[41] D S Freed, Lectures on Field theory and topology, 133, Amer. Math. Soc. (2019)

[42] D S Freed, M J Hopkins, Chern–Weil forms and abstract homotopy theory, Bull. Amer. Math. Soc. 50 (2013) 431 | DOI

[43] D S Freed, M J Hopkins, Consistency of M–theory on unorientable manifolds, preprint (2019)

[44] D S Freed, M J Hopkins, C Teleman, Consistent orientation of moduli spaces, from: "The many facets of geometry" (editors O García-Prada, J P Bourguignon, S Salamon), Oxford Univ. Press (2010) 395 | DOI

[45] D S Freed, M J Hopkins, C Teleman, Loop groups and twisted K–theory, III, Ann. of Math. 174 (2011) 947 | DOI

[46] D S Freed, J Lott, An index theorem in differential K–theory, Geom. Topol. 14 (2010) 903 | DOI

[47] D S Freed, G W Moore, Setting the quantum integrand of M–theory, Comm. Math. Phys. 263 (2006) 89 | DOI

[48] D S Freed, G W Moore, Twisted equivariant matter, Ann. Henri Poincaré 14 (2013) 1927 | DOI

[49] L Fu, C L Kane, E J Mele, Topological insulators in three dimensions, Phys. Rev. Lett. 98 (2007) | DOI

[50] D Gaiotto, A Kapustin, Spin TQFTs and fermionic phases of matter, Int. J. Mod. Phys. A 31 (2016) | DOI

[51] D Gaiotto, A Kapustin, Z Komargodski, N Seiberg, Theta, time reversal and temperature, J. High Energy Phys. 2017 (2017) | DOI

[52] S Galatius, U Tillmann, I Madsen, M Weiss, The homotopy type of the cobordism category, Acta Math. 202 (2009) 195 | DOI

[53] J Glimm, A Jaffe, Quantum physics: a functional integral point of view, Springer (1987) | DOI

[54] H Greaves, T Thomas, On the CPT theorem, Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Modern Phys. 45 (2014) 46 | DOI

[55] J P C Greenlees, J P May, Equivariant stable homotopy theory, from: "Handbook of algebraic topology" (editor I M James), North-Holland (1995) 277 | DOI

[56] Z C Gu, X G Wen, Symmetry-protected topological orders for interacting fermions : fermionic topological nonlinear σ models and a special group supercohomology theory, Phys. Rev. B 90 (2014) | DOI

[57] M Guo, P Putrov, J Wang, Time reversal, SU(N) Yang–Mills and cobordisms : interacting topological superconductors/insulators and quantum spin liquids in 3 + 1D, Ann. Physics 394 (2018) 244 | DOI

[58] P Heinzner, A Huckleberry, M R Zirnbauer, Symmetry classes of disordered fermions, Comm. Math. Phys. 257 (2005) 725 | DOI

[59] M A Hill, M J Hopkins, D C Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math. 184 (2016) 1 | DOI

[60] M J Hopkins, Algebraic topology and modular forms, from: "Proceedings of the International Congress of Mathematicians, I" (editor T Li), Higher Ed. Press (2002) 291

[61] M J Hopkins, I M Singer, Quadratic functions in geometry, topology, and M–theory, J. Differential Geom. 70 (2005) 329 | DOI

[62] T Johnson-Freyd, Spin, statistics, orientations, unitarity, Algebr. Geom. Topol. 17 (2017) 917 | DOI

[63] R Jost, Eine Bemerkung zum CTP theorem, Helv. Phys. Acta 30 (1957) 409

[64] C L Kane, E J Mele, Z2 topological order and the quantum spin Hall effect, Phys. Rev. Lett. 95 (2005) | DOI

[65] M Kapranov, Supergeometry in mathematics and physics, preprint (2015)

[66] A Kapustin, Topological field theory, higher categories, and their applications, from: "Proceedings of the International Congress of Mathematicians, III" (editors R Bhatia, A Pal, G Rangarajan, V Srinivas, M Vanninathan, P Gastesi), Hindustan (2010) 2021

[67] A Kapustin, Symmetry protected topological phases, anomalies, and cobordisms: beyond group cohomology, preprint (2014)

[68] A Kapustin, R Thorngren, A Turzillo, Z Wang, Fermionic symmetry protected topological phases and cobordisms, J. High Energy Phys. 2015 (2015) | DOI

[69] D Kazhdan, Introduction to QFT, from: "Quantum fields and strings: a course for mathematicians, I" (editors P Deligne, P Etingof, D S Freed, L C Jeffrey, D Kazhdan, J W Morgan, D R Morrison, E Witten), Amer. Math. Soc. (1999) 377

[70] R Kennedy, M R Zirnbauer, Bott periodicity for Z2 symmetric ground states of gapped free-fermion systems, Comm. Math. Phys. 342 (2016) 909 | DOI

[71] R C Kirby, L R Taylor, A calculation of Pin+ bordism groups, Comment. Math. Helv. 65 (1990) 434 | DOI

[72] R C Kirby, L R Taylor, Pin structures on low-dimensional manifolds, from: "Geometry of low-dimensional manifolds, II" (editors S K Donaldson, C B Thomas), Lond. Math. Soc. Lect. Note Ser. 151, Cambridge Univ. Press (1990) 177 | DOI

[73] A Kitaev, Anyons in an exactly solved model and beyond, Ann. Physics 321 (2006) 2 | DOI

[74] A Kitaev, Periodic table for topological insulators and superconductors, AIP Conf. Proc. 1134 (2009) 22 | DOI

[75] A Kitaev, Toward topological classification of phases with short-range entanglement, video lecture (2011)

[76] A Kitaev, On the classification of short-range entangled states, video lecture (2013)

[77] A Kitaev, Short range entangled quantum states, lecture (2014)

[78] A Kitaev, Homotopy-theoretic approach to SPT phases in action : Z16 classification of three-dimensional superconductors, video lecture (2015)

[79] K R Klonoff, An index theorem in differential K–theory, PhD thesis, University of Texas at Austin (2008)

[80] M Kontsevich, G B Segal, Wick rotation and the positivity of energy in quantum field theory, in preparation

[81] R J Lawrence, Triangulations, categories and extended topological field theories, from: "Quantum topology" (editors L H Kauffman, R A Baadhio), Ser. Knots Everything 3, World Sci. (1993) 191 | DOI

[82] H B Lawson Jr., M L Michelsohn, Spin geometry, 38, Princeton Univ. Press (1989)

[83] J Lott, Higher-degree analogs of the determinant line bundle, Comm. Math. Phys. 230 (2002) 41 | DOI

[84] Y M Lu, A Vishwanath, Theory and classification of interacting integer topological phases in two dimensions : a Chern–Simons approach, Phys. Rev. B 86 (2012) | DOI

[85] J Lurie, On the classification of topological field theories, from: "Current developments in mathematics" (editors D Jerison, B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), International (2009) 129

[86] H R Margolis, Spectra and the Steenrod algebra : modules over the Steenrod algebra and the stable homotopy category, 29, North-Holland (1983)

[87] M A Metlitski, S–duality of u(1) gauge theory with θ = π on non-orientable manifolds : applications to topological insulators and superconductors, preprint (2015)

[88] M A Metlitski, L Fidkowski, X Chen, A Vishwanath, Interaction effects on 3D topological superconductors : surface topological order from vortex condensation, the 16 fold way and fermionic Kramers doublets, preprint (2014)

[89] G W Moore, G B Segal, D–branes and K–theory in 2D topological field theory, from: "Dirichlet branes and mirror symmetry" (editors P S Aspinwall, T Bridgeland, A Craw, M R Douglas, M Gross, A Kapustin, G W Moore, G Segal, B Szendrői, P M H Wilson), Clay Math. Monogr. 4, Amer. Math. Soc. (2009) 27

[90] S Morrison, K Walker, Blob homology, Geom. Topol. 16 (2012) 1481 | DOI

[91] R M Nandkishore, M Hermele, Fractons, Ann. Rev. Condensed Matter Phys. 10 (2019) 295 | DOI

[92] H K Nguyen, Higher bordism categories, Master’s thesis, Universität Bonn (2014)

[93] M L Ortiz, Differential equivariant K–theory, PhD thesis, University of Texas at Austin (2009)

[94] K Osterwalder, R Schrader, Axioms for Euclidean Green’s functions, II, Comm. Math. Phys. 42 (1975) 281 | DOI

[95] X L Qi, T L Hughes, S C Zhang, Topological field theory of time-reversal invariant insulators, Phys. Rev. B 78 (2008) | DOI

[96] M Reid, The moduli space of 3–folds with K = 0 may nevertheless be irreducible, Math. Ann. 278 (1987) 329 | DOI

[97] B L Reinhart, Cobordism and the Euler number, Topology 2 (1963) 173 | DOI

[98] S Ryu, A P Schnyder, A Furusaki, A W W Ludwig, Topological insulators and superconductors: tenfold way and dimensional hierarchy, New J. Phys. 12 (2010) | DOI

[99] C Schommer-Pries, Invertible topological field theories, preprint (2017)

[100] S Schwede, Lecture notes on equivariant stable homotopy theory, (2020)

[101] G Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968) 105 | DOI

[102] G Segal, The definition of conformal field theory, from: "Topology, geometry and quantum field theory" (editor U Tillmann), Lond. Math. Soc. Lect. Note Ser. 308, Cambridge Univ. Press (2004) 421

[103] G Segal, Three roles of quantum field theory, I–VI, video lectures (2011)

[104] N Seiberg, E Witten, Gapped boundary phases of topological insulators via weak coupling, Prog. Theor. Exp. Phys. 12 (2016) | DOI

[105] S Sternberg, Lectures on differential geometry, Prentice-Hall (1964)

[106] S Stolz, P Teichner, Supersymmetric field theories and generalized cohomology, from: "Mathematical foundations of quantum field theory and perturbative string theory" (editors H Sati, U Schreiber), Proc. Sympos. Pure Math. 83, Amer. Math. Soc. (2011) 279 | DOI

[107] R E Stong, Notes on cobordism theory, Princeton Univ. Press (1968)

[108] R F Streater, A S Wightman, PCT, spin and statistics, and all that, Benjamin (1964)

[109] R Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954) 17 | DOI

[110] A M Turner, F Pollmann, E Berg, Topological phases of one-dimensional fermions: an entanglement point of view, Phys. Rev. B 83 (2011) | DOI

[111] C Wang, A C Potter, T Senthil, Classification of interacting electronic topological insulators in three dimensions, Science 343 (2014) 629 | DOI

[112] C Wang, T Senthil, Interacting fermionic topological insulators/superconductors in three dimensions, Phys. Rev. B 89 (2014) | DOI

[113] X G Wen, SPT order and algebraic topology, lecture notes (2015)

[114] E Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351 | DOI

[115] E Witten, What one can hope to prove about three-dimensional gauge theory, video lecture (2012)

[116] E Witten, Fermion path integrals and topological phases, Rev. Mod. Phys. 88 (2016) | DOI

[117] Y Z You, Z Wang, J Oon, C Xu, Topological number and fermion Green’s function for strongly interacting topological superconductors, Phys. Rev. B 90 (2014) | DOI

Cité par Sources :