Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We recently defined an invariant of contact manifolds with convex boundary in Kronheimer and Mrowka’s sutured monopole Floer homology theory. Here, we prove that there is an isomorphism between sutured monopole Floer homology and sutured Heegaard Floer homology which identifies our invariant with the contact class defined by Honda, Kazez and Matić in the latter theory. One consequence is that the Legendrian invariants in knot Floer homology behave functorially with respect to Lagrangian concordance. In particular, these invariants provide computable and effective obstructions to the existence of such concordances. Our work also provides the first proof which does not rely on Giroux’s correspondence that Honda, Kazez and Matić’s contact class is well defined up to isomorphism.
Baldwin, John A 1 ; Sivek, Steven 2
@article{GT_2021_25_3_a0, author = {Baldwin, John A and Sivek, Steven}, title = {On the equivalence of contact invariants in sutured {Floer} homology theories}, journal = {Geometry & topology}, pages = {1087--1164}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2021}, doi = {10.2140/gt.2021.25.1087}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1087/} }
TY - JOUR AU - Baldwin, John A AU - Sivek, Steven TI - On the equivalence of contact invariants in sutured Floer homology theories JO - Geometry & topology PY - 2021 SP - 1087 EP - 1164 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1087/ DO - 10.2140/gt.2021.25.1087 ID - GT_2021_25_3_a0 ER -
%0 Journal Article %A Baldwin, John A %A Sivek, Steven %T On the equivalence of contact invariants in sutured Floer homology theories %J Geometry & topology %D 2021 %P 1087-1164 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1087/ %R 10.2140/gt.2021.25.1087 %F GT_2021_25_3_a0
Baldwin, John A; Sivek, Steven. On the equivalence of contact invariants in sutured Floer homology theories. Geometry & topology, Tome 25 (2021) no. 3, pp. 1087-1164. doi : 10.2140/gt.2021.25.1087. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1087/
[1] Comultiplication in link Floer homology and transversely nonsimple links, Algebr. Geom. Topol. 10 (2010) 1417 | DOI
,[2] Naturality in sutured monopole and instanton homology, J. Differential Geom. 100 (2015) 395 | DOI
, ,[3] A contact invariant in sutured monopole homology, Forum Math. Sigma 4 (2016) | DOI
, ,[4] Instanton Floer homology and contact structures, Selecta Math. 22 (2016) 939 | DOI
, ,[5] Invariants of Legendrian and transverse knots in monopole knot homology, J. Symplectic Geom. 16 (2018) 959 | DOI
, ,[6] On the equivalence of Legendrian and transverse invariants in knot Floer homology, Geom. Topol. 17 (2013) 925 | DOI
, , ,[7] Lagrangian concordance of Legendrian knots, Algebr. Geom. Topol. 10 (2010) 63 | DOI
,[8] Floer homology and Lagrangian concordance, from: "Proceedings of the Gökova Geometry–Topology Conference 2014" (editors S Akbulut, D Auroux, T Önder), GGT (2015) 76
, , , ,[9] The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, I, preprint (2012)
, , ,[10] The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, II, preprint (2012)
, , ,[11] The equivalence of Heegaard Floer homology and embedded contact homology, III: From hat to plus, preprint (2012)
, , ,[12] Obstructions to Lagrangian concordance, Algebr. Geom. Topol. 16 (2016) 797 | DOI
, , ,[13] Legendrian knots and exact Lagrangian cobordisms, J. Eur. Math. Soc. 18 (2016) 2627 | DOI
, , ,[14] Invariants in contact topology, from: "Proceedings of the International Congress of Mathematicians, II" (editors G Fischer, U Rehmann), Deutsche Mathematiker Vereinigung (1998) 327
,[15] On connected sums and Legendrian knots, Adv. Math. 179 (2003) 59 | DOI
, ,[16] Cabling and transverse simplicity, Ann. of Math. 162 (2005) 1305 | DOI
, ,[17] Legendrian and transverse twist knots, J. Eur. Math. Soc. 15 (2013) 969 | DOI
, , ,[18] On the classification of tight contact structures, I, Geom. Topol. 4 (2000) 309 | DOI
,[19] The contact invariant in sutured Floer homology, Invent. Math. 176 (2009) 637 | DOI
, , ,[20] Holomorphic discs and sutured manifolds, Algebr. Geom. Topol. 6 (2006) 1429 | DOI
,[21] Cobordisms of sutured manifolds and the functoriality of link Floer homology, Adv. Math. 299 (2016) 940 | DOI
,[22] Concordance maps in knot Floer homology, Geom. Topol. 20 (2016) 3623 | DOI
, ,[23] On the Thurston–Bennequin invariant of Legendrian knots and nonexactness of Bennequin’s inequality, Invent. Math. 133 (1998) 227 | DOI
,[24] A family of transversely nonsimple knots, Algebr. Geom. Topol. 10 (2010) 293 | DOI
, ,[25] Monopoles and contact structures, Invent. Math. 130 (1997) 209 | DOI
, ,[26] Monopoles and three-manifolds, 10, Cambridge Univ. Press (2007) | DOI
, ,[27] Knots, sutures, and excision, J. Differential Geom. 84 (2010) 301 | DOI
, ,[28] Monopoles and lens space surgeries, Ann. of Math. 165 (2007) 457 | DOI
, , , ,[29] HF = HM, I : Heegaard Floer homology and Seiberg–Witten Floer homology, Geom. Topol. 24 (2020) 2829 | DOI
, , ,[30] HF = HM, II : Reeb orbits and holomorphic curves for the ech/Heegaard Floer correspondence, Geom. Topol. 24 (2020) 2855 | DOI
, , ,[31] HF = HM, III : holomorphic curves and the differential for the ech/Heegaard Floer correspondence, Geom. Topol. 24 (2020) 3013 | DOI
, , ,[32] HF = HM, IV : The Seiberg–Witten Floer homology and ech correspondence, Geom. Topol. 24 (2020) 3219 | DOI
, , ,[33] HF = HM, V : Seiberg–Witten Floer homology and handle additions, Geom. Topol. 24 (2020) 3471 | DOI
, , ,[34] Heegaard–Floer homology of broken fibrations over the circle, Adv. Math. 244 (2013) 268 | DOI
,[35] Contact structures and reducible surgeries, Compos. Math. 152 (2016) 152 | DOI
, ,[36] Heegaard Floer invariants of Legendrian knots in contact three-manifolds, J. Eur. Math. Soc. 11 (2009) 1307 | DOI
, , , ,[37] Transverse knots distinguished by knot Floer homology, J. Symplectic Geom. 6 (2008) 461 | DOI
, , ,[38] Contact surgeries and the transverse invariant in knot Floer homology, J. Inst. Math. Jussieu 9 (2010) 601 | DOI
, ,[39] Grid homology for knots and links, 208, Amer. Math. Soc. (2015) | DOI
, , ,[40] Heegaard Floer homology and alternating knots, Geom. Topol. 7 (2003) 225 | DOI
, ,[41] Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615 | DOI
, ,[42] Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. 159 (2004) 1159 | DOI
, ,[43] Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027 | DOI
, ,[44] Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39 | DOI
, ,[45] Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326 | DOI
, ,[46] Legendrian knots, transverse knots and combinatorial Floer homology, Geom. Topol. 12 (2008) 941 | DOI
, , ,[47] Bounds for the Thurston–Bennequin number from Floer homology, Algebr. Geom. Topol. 4 (2004) 399 | DOI
,[48] Monopole Floer homology and Legendrian knots, Geom. Topol. 16 (2012) 751 | DOI
,[49] The contact homology of Legendrian knots with maximal Thurston–Bennequin invariant, J. Symplectic Geom. 11 (2013) 167 | DOI
,[50] On invariants for Legendrian knots, Pacific J. Math. 239 (2009) 157 | DOI
, ,[51] The Seiberg–Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007) 2117 | DOI
,[52] Embedded contact homology and Seiberg–Witten Floer cohomology, I, Geom. Topol. 14 (2010) 2497 | DOI
,[53] Embedded contact homology and Seiberg–Witten Floer cohomology, II, Geom. Topol. 14 (2010) 2583 | DOI
,[54] Embedded contact homology and Seiberg–Witten Floer cohomology, III, Geom. Topol. 14 (2010) 2721 | DOI
,[55] Embedded contact homology and Seiberg–Witten Floer cohomology, IV, Geom. Topol. 14 (2010) 2819 | DOI
,[56] Embedded contact homology and Seiberg–Witten Floer cohomology, V, Geom. Topol. 14 (2010) 2961 | DOI
,[57] Transversely nonsimple knots, Algebr. Geom. Topol. 8 (2008) 1481 | DOI
,Cité par Sources :