On the equivalence of contact invariants in sutured Floer homology theories
Geometry & topology, Tome 25 (2021) no. 3, pp. 1087-1164.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We recently defined an invariant of contact manifolds with convex boundary in Kronheimer and Mrowka’s sutured monopole Floer homology theory. Here, we prove that there is an isomorphism between sutured monopole Floer homology and sutured Heegaard Floer homology which identifies our invariant with the contact class defined by Honda, Kazez and Matić in the latter theory. One consequence is that the Legendrian invariants in knot Floer homology behave functorially with respect to Lagrangian concordance. In particular, these invariants provide computable and effective obstructions to the existence of such concordances. Our work also provides the first proof which does not rely on Giroux’s correspondence that Honda, Kazez and Matić’s contact class is well defined up to isomorphism.

DOI : 10.2140/gt.2021.25.1087
Classification : 53D10, 53D40, 57R58
Keywords: contact structures, sutured manifolds, Heegaard Floer homology, monopole Floer homology

Baldwin, John A 1 ; Sivek, Steven 2

1 Department of Mathematics, Boston College, Chestnut Hill, MA, United States
2 Department of Mathematics, Imperial College London, London, United Kingdom
@article{GT_2021_25_3_a0,
     author = {Baldwin, John A and Sivek, Steven},
     title = {On the equivalence of contact invariants in sutured {Floer} homology theories},
     journal = {Geometry & topology},
     pages = {1087--1164},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2021},
     doi = {10.2140/gt.2021.25.1087},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1087/}
}
TY  - JOUR
AU  - Baldwin, John A
AU  - Sivek, Steven
TI  - On the equivalence of contact invariants in sutured Floer homology theories
JO  - Geometry & topology
PY  - 2021
SP  - 1087
EP  - 1164
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1087/
DO  - 10.2140/gt.2021.25.1087
ID  - GT_2021_25_3_a0
ER  - 
%0 Journal Article
%A Baldwin, John A
%A Sivek, Steven
%T On the equivalence of contact invariants in sutured Floer homology theories
%J Geometry & topology
%D 2021
%P 1087-1164
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1087/
%R 10.2140/gt.2021.25.1087
%F GT_2021_25_3_a0
Baldwin, John A; Sivek, Steven. On the equivalence of contact invariants in sutured Floer homology theories. Geometry & topology, Tome 25 (2021) no. 3, pp. 1087-1164. doi : 10.2140/gt.2021.25.1087. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1087/

[1] J A Baldwin, Comultiplication in link Floer homology and transversely nonsimple links, Algebr. Geom. Topol. 10 (2010) 1417 | DOI

[2] J A Baldwin, S Sivek, Naturality in sutured monopole and instanton homology, J. Differential Geom. 100 (2015) 395 | DOI

[3] J A Baldwin, S Sivek, A contact invariant in sutured monopole homology, Forum Math. Sigma 4 (2016) | DOI

[4] J A Baldwin, S Sivek, Instanton Floer homology and contact structures, Selecta Math. 22 (2016) 939 | DOI

[5] J A Baldwin, S Sivek, Invariants of Legendrian and transverse knots in monopole knot homology, J. Symplectic Geom. 16 (2018) 959 | DOI

[6] J A Baldwin, D S Vela-Vick, V Vértesi, On the equivalence of Legendrian and transverse invariants in knot Floer homology, Geom. Topol. 17 (2013) 925 | DOI

[7] B Chantraine, Lagrangian concordance of Legendrian knots, Algebr. Geom. Topol. 10 (2010) 63 | DOI

[8] B Chantraine, G Dimitroglou Rizell, P Ghiggini, R Golovko, Floer homology and Lagrangian concordance, from: "Proceedings of the Gökova Geometry–Topology Conference 2014" (editors S Akbulut, D Auroux, T Önder), GGT (2015) 76

[9] V Colin, P Ghiggini, K Honda, The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, I, preprint (2012)

[10] V Colin, P Ghiggini, K Honda, The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, II, preprint (2012)

[11] V Colin, P Ghiggini, K Honda, The equivalence of Heegaard Floer homology and embedded contact homology, III: From hat to plus, preprint (2012)

[12] C Cornwell, L Ng, S Sivek, Obstructions to Lagrangian concordance, Algebr. Geom. Topol. 16 (2016) 797 | DOI

[13] T Ekholm, K Honda, T Kálmán, Legendrian knots and exact Lagrangian cobordisms, J. Eur. Math. Soc. 18 (2016) 2627 | DOI

[14] Y Eliashberg, Invariants in contact topology, from: "Proceedings of the International Congress of Mathematicians, II" (editors G Fischer, U Rehmann), Deutsche Mathematiker Vereinigung (1998) 327

[15] J B Etnyre, K Honda, On connected sums and Legendrian knots, Adv. Math. 179 (2003) 59 | DOI

[16] J B Etnyre, K Honda, Cabling and transverse simplicity, Ann. of Math. 162 (2005) 1305 | DOI

[17] J B Etnyre, L L Ng, V Vértesi, Legendrian and transverse twist knots, J. Eur. Math. Soc. 15 (2013) 969 | DOI

[18] K Honda, On the classification of tight contact structures, I, Geom. Topol. 4 (2000) 309 | DOI

[19] K Honda, W H Kazez, G Matić, The contact invariant in sutured Floer homology, Invent. Math. 176 (2009) 637 | DOI

[20] A Juhász, Holomorphic discs and sutured manifolds, Algebr. Geom. Topol. 6 (2006) 1429 | DOI

[21] A Juhász, Cobordisms of sutured manifolds and the functoriality of link Floer homology, Adv. Math. 299 (2016) 940 | DOI

[22] A Juhász, M Marengon, Concordance maps in knot Floer homology, Geom. Topol. 20 (2016) 3623 | DOI

[23] Y Kanda, On the Thurston–Bennequin invariant of Legendrian knots and nonexactness of Bennequin’s inequality, Invent. Math. 133 (1998) 227 | DOI

[24] T Khandhawit, L Ng, A family of transversely nonsimple knots, Algebr. Geom. Topol. 10 (2010) 293 | DOI

[25] P B Kronheimer, T S Mrowka, Monopoles and contact structures, Invent. Math. 130 (1997) 209 | DOI

[26] P Kronheimer, T Mrowka, Monopoles and three-manifolds, 10, Cambridge Univ. Press (2007) | DOI

[27] P Kronheimer, T Mrowka, Knots, sutures, and excision, J. Differential Geom. 84 (2010) 301 | DOI

[28] P Kronheimer, T Mrowka, P Ozsváth, Z Szabó, Monopoles and lens space surgeries, Ann. of Math. 165 (2007) 457 | DOI

[29] Ç Kutluhan, Y J Lee, C H Taubes, HF = HM, I : Heegaard Floer homology and Seiberg–Witten Floer homology, Geom. Topol. 24 (2020) 2829 | DOI

[30] Ç Kutluhan, Y J Lee, C H Taubes, HF = HM, II : Reeb orbits and holomorphic curves for the ech/Heegaard Floer correspondence, Geom. Topol. 24 (2020) 2855 | DOI

[31] Ç Kutluhan, Y J Lee, C H Taubes, HF = HM, III : holomorphic curves and the differential for the ech/Heegaard Floer correspondence, Geom. Topol. 24 (2020) 3013 | DOI

[32] Ç Kutluhan, Y J Lee, C Taubes, HF = HM, IV : The Seiberg–Witten Floer homology and ech correspondence, Geom. Topol. 24 (2020) 3219 | DOI

[33] Ç Kutluhan, Y J Lee, C H Taubes, HF = HM, V : Seiberg–Witten Floer homology and handle additions, Geom. Topol. 24 (2020) 3471 | DOI

[34] Y Lekili, Heegaard–Floer homology of broken fibrations over the circle, Adv. Math. 244 (2013) 268 | DOI

[35] T Lidman, S Sivek, Contact structures and reducible surgeries, Compos. Math. 152 (2016) 152 | DOI

[36] P Lisca, P Ozsváth, A I Stipsicz, Z Szabó, Heegaard Floer invariants of Legendrian knots in contact three-manifolds, J. Eur. Math. Soc. 11 (2009) 1307 | DOI

[37] L Ng, P Ozsváth, D Thurston, Transverse knots distinguished by knot Floer homology, J. Symplectic Geom. 6 (2008) 461 | DOI

[38] P Ozsváth, A I Stipsicz, Contact surgeries and the transverse invariant in knot Floer homology, J. Inst. Math. Jussieu 9 (2010) 601 | DOI

[39] P S Ozsváth, A I Stipsicz, Z Szabó, Grid homology for knots and links, 208, Amer. Math. Soc. (2015) | DOI

[40] P Ozsváth, Z Szabó, Heegaard Floer homology and alternating knots, Geom. Topol. 7 (2003) 225 | DOI

[41] P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615 | DOI

[42] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. 159 (2004) 1159 | DOI

[43] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027 | DOI

[44] P Ozsváth, Z Szabó, Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39 | DOI

[45] P Ozsváth, Z Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326 | DOI

[46] P Ozsváth, Z Szabó, D Thurston, Legendrian knots, transverse knots and combinatorial Floer homology, Geom. Topol. 12 (2008) 941 | DOI

[47] O Plamenevskaya, Bounds for the Thurston–Bennequin number from Floer homology, Algebr. Geom. Topol. 4 (2004) 399 | DOI

[48] S Sivek, Monopole Floer homology and Legendrian knots, Geom. Topol. 16 (2012) 751 | DOI

[49] S Sivek, The contact homology of Legendrian knots with maximal Thurston–Bennequin invariant, J. Symplectic Geom. 11 (2013) 167 | DOI

[50] A I Stipsicz, V Vértesi, On invariants for Legendrian knots, Pacific J. Math. 239 (2009) 157 | DOI

[51] C H Taubes, The Seiberg–Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007) 2117 | DOI

[52] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, I, Geom. Topol. 14 (2010) 2497 | DOI

[53] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, II, Geom. Topol. 14 (2010) 2583 | DOI

[54] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, III, Geom. Topol. 14 (2010) 2721 | DOI

[55] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, IV, Geom. Topol. 14 (2010) 2819 | DOI

[56] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, V, Geom. Topol. 14 (2010) 2961 | DOI

[57] V Vértesi, Transversely nonsimple knots, Algebr. Geom. Topol. 8 (2008) 1481 | DOI

Cité par Sources :