Enumeration of holomorphic cylinders in log Calabi–Yau surfaces, II : Positivity, integrality and the gluing formula
Geometry & topology, Tome 25 (2021) no. 1, pp. 1-46.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove three fundamental properties of counting holomorphic cylinders in log Calabi–Yau surfaces: positivity, integrality and the gluing formula. Positivity and integrality assert that the numbers of cylinders, defined via virtual techniques, are in fact nonnegative integers. The gluing formula roughly says that cylinders can be glued together to form longer cylinders, and the number of longer cylinders equals the product of the numbers of shorter cylinders. Our approach uses Berkovich geometry, tropical geometry, deformation theory and the ideas in the proof of associativity relations of Gromov–Witten invariants by Maxim Kontsevich. These three properties provide evidence for a conjectural relation between counting cylinders and the broken lines of Gross, Hacking and Keel.

DOI : 10.2140/gt.2021.25.1
Classification : 14N35, 14G22, 14J32, 14T05, 53D37
Keywords: cylinder, enumerative geometry, nonarchimedean geometry, Berkovich space, Gromov–Witten, Calabi–Yau

Yu, Tony Yue 1

1 Laboratoire de Mathématiques d’Orsay, Université Paris-Sud, CNRS, Université Paris-Saclay, Orsay, France
@article{GT_2021_25_1_a0,
     author = {Yu, Tony Yue},
     title = {Enumeration of holomorphic cylinders in log {Calabi{\textendash}Yau} surfaces, {II} : {Positivity,} integrality and the gluing formula},
     journal = {Geometry & topology},
     pages = {1--46},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2021},
     doi = {10.2140/gt.2021.25.1},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1/}
}
TY  - JOUR
AU  - Yu, Tony Yue
TI  - Enumeration of holomorphic cylinders in log Calabi–Yau surfaces, II : Positivity, integrality and the gluing formula
JO  - Geometry & topology
PY  - 2021
SP  - 1
EP  - 46
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1/
DO  - 10.2140/gt.2021.25.1
ID  - GT_2021_25_1_a0
ER  - 
%0 Journal Article
%A Yu, Tony Yue
%T Enumeration of holomorphic cylinders in log Calabi–Yau surfaces, II : Positivity, integrality and the gluing formula
%J Geometry & topology
%D 2021
%P 1-46
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1/
%R 10.2140/gt.2021.25.1
%F GT_2021_25_1_a0
Yu, Tony Yue. Enumeration of holomorphic cylinders in log Calabi–Yau surfaces, II : Positivity, integrality and the gluing formula. Geometry & topology, Tome 25 (2021) no. 1, pp. 1-46. doi : 10.2140/gt.2021.25.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.2021.25.1/

[1] M Abouzaid, Family Floer cohomology and mirror symmetry, from: "Proceedings of the International Congress of Mathematicians, II" (editors S Y Jang, Y R Kim, D W Lee, I Yie), Kyung Moon Sa (2014) 813

[2] D Abramovich, L Caporaso, S Payne, The tropicalization of the moduli space of curves, Ann. Sci. École Norm. Sup. 48 (2015) 765 | DOI

[3] D Auroux, Mirror symmetry and T–duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. 1 (2007) 51

[4] D Auroux, Special Lagrangian fibrations, wall-crossing, and mirror symmetry, from: "Geometry, analysis, and algebraic geometry: forty years of the Journal of Differential Geometry" (editors H D Cao, S T Yau), Surv. Differ. Geom. 13, International (2009) 1 | DOI

[5] M Baker, S Payne, J Rabinoff, Nonarchimedean geometry, tropicalization, and metrics on curves, Algebr. Geom. 3 (2016) 63 | DOI

[6] K Behrend, B Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997) 45 | DOI

[7] V G Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, 33, Amer. Math. Soc. (1990)

[8] V G Berkovich, Étale cohomology for non-Archimedean analytic spaces, Inst. Hautes Études Sci. Publ. Math. 78 (1993) 5 | DOI

[9] S Bosch, U Güntzer, R Remmert, Non-Archimedean analysis : a systematic approach to rigid analytic geometry, 261, Springer (1984)

[10] A Brini, R Cavalieri, D Ross, Crepant resolutions and open strings, J. Reine Angew. Math. 755 (2019) 191 | DOI

[11] M Carl, M Pumperla, B Siebert, A tropical view on Landau–Ginzburg models, preprint (2010)

[12] K Chan, S C Lau, Open Gromov–Witten invariants and superpotentials for semi-Fano toric surfaces, Int. Math. Res. Not. 2014 (2014) 3759 | DOI

[13] K Chan, S C Lau, N C Leung, H H Tseng, Open Gromov–Witten invariants, mirror maps, and Seidel representations for toric manifolds, Duke Math. J. 166 (2017) 1405 | DOI

[14] Q Chen, M Satriano, Chow quotients of toric varieties as moduli of stable log maps, Algebra Number Theory 7 (2013) 2313 | DOI

[15] B Conrad, M Temkin, Non-Archimedean analytification of algebraic spaces, J. Algebraic Geom. 18 (2009) 731 | DOI

[16] A Ducros, Families of Berkovich spaces, 400, Soc. Math. France (2018) | DOI

[17] B Fang, C C M Liu, Open Gromov–Witten invariants of toric Calabi–Yau 3–folds, Comm. Math. Phys. 323 (2013) 285 | DOI

[18] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory : anomaly and obstruction, 46, Amer. Math. Soc. (2009)

[19] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian Floer theory on compact toric manifolds : survey, from: "Surveys in differential geometry" (editors H D Cao, S T Yau), Surv. Differ. Geom. 17, International (2012) 229 | DOI

[20] W Fulton, R Pandharipande, Notes on stable maps and quantum cohomology, from: "Algebraic geometry" (editors J Kollár, R Lazarsfeld, D R Morrison), Proc. Sympos. Pure Math. 62, Amer. Math. Soc. (1997) 45 | DOI

[21] A Gathmann, H Markwig, Kontsevich’s formula and the WDVV equations in tropical geometry, Adv. Math. 217 (2008) 537 | DOI

[22] M Gross, Mirror symmetry for P2 and tropical geometry, Adv. Math. 224 (2010) 169 | DOI

[23] M Gross, P Hacking, S Keel, Mirror symmetry for log Calabi–Yau surfaces, I, preprint (2011)

[24] M Gross, P Hacking, S Keel, Mirror symmetry for log Calabi–Yau surfaces, I, Publ. Math. Inst. Hautes Études Sci. 122 (2015) 65 | DOI

[25] M Gross, P Hacking, S Keel, Moduli of surfaces with an anti-canonical cycle, Compos. Math. 151 (2015) 265 | DOI

[26] M Gross, P Hacking, S Keel, M Kontsevich, Canonical bases for cluster algebras, J. Amer. Math. Soc. 31 (2018) 497 | DOI

[27] M Gross, P Hacking, B Siebert, Theta functions on varieties with effective anti-canonical class, preprint (2016)

[28] M Gross, B Siebert, From real affine geometry to complex geometry, Ann. of Math. 174 (2011) 1301 | DOI

[29] M Gross, B Siebert, Theta functions and mirror symmetry, from: "Surveys in differential geometry" (editors H D Cao, S T Yau), Surv. Differ. Geom. 21, International (2016) 95

[30] W Gubler, J Rabinoff, A Werner, Skeletons and tropicalizations, Adv. Math. 294 (2016) 150 | DOI

[31] R Hartshorne, Algebraic geometry, 52, Springer (1977) | DOI

[32] S Keel, J Mckernan, Rational curves on quasi-projective surfaces, 669, Amer. Math. Soc. (1999) | DOI

[33] G Kempf, F F Knudsen, D Mumford, B Saint-Donat, Toroidal embeddings, I, 339, Springer (1973) | DOI

[34] J Kollár, Rational curves on algebraic varieties, 32, Springer (1996) | DOI

[35] M Kontsevich, Enumeration of rational curves via torus actions, from: "The moduli space of curves" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 335 | DOI

[36] M Kontsevich, Y Manin, Gromov–Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994) 525 | DOI

[37] M Kontsevich, Y Soibelman, Homological mirror symmetry and torus fibrations, from: "Symplectic geometry and mirror symmetry" (editors K Fukaya, Y G Oh, K Ono, G Tian), World Sci. (2001) 203 | DOI

[38] M Kontsevich, Y Soibelman, Affine structures and non-Archimedean analytic spaces, from: "The unity of mathematics" (editors P Etingof, V Retakh, I M Singer), Progr. Math. 244, Birkhäuser (2006) 321 | DOI

[39] Y S Lin, Open Gromov–Witten invariants on elliptic K3 surfaces and wall-crossing, Comm. Math. Phys. 349 (2017) 109 | DOI

[40] E Looijenga, Rational surfaces with an anticanonical cycle, Ann. of Math. 114 (1981) 267 | DOI

[41] J Nicaise, C Xu, T Y Yu, The non-Archimedean SYZ fibration, Compos. Math. 155 (2019) 953 | DOI

[42] T Nishinou, Disk counting on toric varieties via tropical curves, Amer. J. Math. 134 (2012) 1423 | DOI

[43] R Pandharipande, J Solomon, J Walcher, Disk enumeration on the quintic 3–fold, J. Amer. Math. Soc. 21 (2008) 1169 | DOI

[44] M Porta, T Y Yu, Higher analytic stacks and GAGA theorems, Adv. Math. 302 (2016) 351 | DOI

[45] D Ranganathan, Skeletons of stable maps, I : Rational curves in toric varieties, J. Lond. Math. Soc. 95 (2017) 804 | DOI

[46] D Ranganathan, K Santos-Parker, J Wise, Moduli of stable maps in genus one and logarithmic geometry, I, Geom. Topol. 23 (2019) 3315 | DOI

[47] D Ranganathan, K Santos-Parker, J Wise, Moduli of stable maps in genus one and logarithmic geometry, II, Algebra Number Theory 13 (2019) 1765 | DOI

[48] D Ross, Localization and gluing of orbifold amplitudes : the Gromov–Witten orbifold vertex, Trans. Amer. Math. Soc. 366 (2014) 1587 | DOI

[49] A Strominger, S T Yau, E Zaslow, Mirror symmetry is T–duality, Nuclear Phys. B 479 (1996) 243 | DOI

[50] M Temkin, On local properties of non-Archimedean analytic spaces, Math. Ann. 318 (2000) 585 | DOI

[51] J Tu, On the reconstruction problem in mirror symmetry, Adv. Math. 256 (2014) 449 | DOI

[52] J Y Welschinger, Open Gromov–Witten invariants in dimension six, Math. Ann. 356 (2013) 1163 | DOI

[53] T Y Yu, Tropicalization of the moduli space of stable maps, Math. Z. 281 (2015) 1035 | DOI

[54] T Y Yu, Enumeration of holomorphic cylinders in log Calabi–Yau surfaces, I, Math. Ann. 366 (2016) 1649 | DOI

[55] T Y Yu, Gromov compactness in non-Archimedean analytic geometry, J. Reine Angew. Math. 741 (2018) 179 | DOI

Cité par Sources :