Kähler groups and subdirect products of surface groups
Geometry & topology, Tome 24 (2020) no. 2, pp. 971-1017.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We present a construction that produces infinite classes of Kähler groups that arise as fundamental groups of fibres of maps to higher-dimensional tori. Following the work of Delzant and Gromov, there is great interest in knowing which subgroups of direct products of surface groups are Kähler. We apply our construction to obtain new classes of irreducible, coabelian Kähler subgroups of direct products of r surface groups. These cover the full range of possible finiteness properties of irreducible subgroups of direct products of r surface groups: for any r 3 and 2 k r 1, our classes of subgroups contain Kähler groups that have a classifying space with finite k–skeleton while not having a classifying space with finitely many (k+1)–cells.

We also address the converse question of finding constraints on Kähler subdirect products of surface groups and, more generally, on homomorphisms from Kähler groups to direct products of surface groups. We show that if a Kähler subdirect product of r surface groups admits a classifying space with finite k–skeleton for k > r 2, then it is virtually the kernel of an epimorphism from a direct product of surface groups onto a free abelian group of even rank.

DOI : 10.2140/gt.2020.24.971
Classification : 20F65, 32J27, 20J05, 32Q15
Keywords: Kähler groups, surface groups, branched covers, homological finiteness properties

Llosa Isenrich, Claudio 1

1 Max Planck Institute for Mathematics, Bonn, Germany, Faculty of Mathematics, University of Vienna, Vienna, Austria
@article{GT_2020_24_2_a5,
     author = {Llosa Isenrich, Claudio},
     title = {K\"ahler groups and subdirect products of surface groups},
     journal = {Geometry & topology},
     pages = {971--1017},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2020},
     doi = {10.2140/gt.2020.24.971},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.971/}
}
TY  - JOUR
AU  - Llosa Isenrich, Claudio
TI  - Kähler groups and subdirect products of surface groups
JO  - Geometry & topology
PY  - 2020
SP  - 971
EP  - 1017
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.971/
DO  - 10.2140/gt.2020.24.971
ID  - GT_2020_24_2_a5
ER  - 
%0 Journal Article
%A Llosa Isenrich, Claudio
%T Kähler groups and subdirect products of surface groups
%J Geometry & topology
%D 2020
%P 971-1017
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.971/
%R 10.2140/gt.2020.24.971
%F GT_2020_24_2_a5
Llosa Isenrich, Claudio. Kähler groups and subdirect products of surface groups. Geometry & topology, Tome 24 (2020) no. 2, pp. 971-1017. doi : 10.2140/gt.2020.24.971. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.971/

[1] J Amorós, M Burger, K Corlette, D Kotschick, D Toledo, Fundamental groups of compact Kähler manifolds, 44, Amer. Math. Soc. (1996) | DOI

[2] D Arapura, Homomorphisms between Kähler groups, from: "Topology of algebraic varieties and singularities" (editors J I Cogolludo-Agustín, E Hironaka), Contemp. Math. 538, Amer. Math. Soc. (2011) 95 | DOI

[3] R Bieri, Homological dimension of discrete groups, Queen Mary College, Department of Pure Mathematics (1981)

[4] C Birkenhake, H Lange, Complex tori, 177, Birkhäuser (1999) | DOI

[5] I Biswas, M Mj, D Pancholi, Homotopical height, Internat. J. Math. 25 (2014) | DOI

[6] I Biswas, M Mj, H Seshadri, 3–Manifold groups, Kähler groups and complex surfaces, Commun. Contemp. Math. 14 (2012) | DOI

[7] M R Bridson, J Howie, C F Miller Iii, H Short, The subgroups of direct products of surface groups, Geom. Dedicata 92 (2002) 95 | DOI

[8] M R Bridson, J Howie, C F Miller Iii, H Short, Subgroups of direct products of limit groups, Ann. of Math. 170 (2009) 1447 | DOI

[9] M R Bridson, J Howie, C F Miller Iii, H Short, On the finite presentation of subdirect products and the nature of residually free groups, Amer. J. Math. 135 (2013) 891 | DOI

[10] M R Bridson, C Llosa Isenrich, Kodaira fibrations, Kähler groups, and finiteness properties, Trans. Amer. Math. Soc. 372 (2019) 5869 | DOI

[11] M R Bridson, C F Miller Iii, Structure and finiteness properties of subdirect products of groups, Proc. Lond. Math. Soc. 98 (2009) 631 | DOI

[12] M Burger, Fundamental groups of Kähler manifolds and geometric group theory, from: "Séminaire Bourbaki, 2009/2010", Astérisque 339, Soc. Math. France (2011)

[13] F Catanese, Moduli and classification of irregular Kaehler manifolds (and algebraic varieties) with Albanese general type fibrations, Invent. Math. 104 (1991) 263 | DOI

[14] F Catanese, Fibred Kähler and quasi-projective groups, Adv. Geom. 3 (2003) | DOI

[15] F Catanese, Differentiable and deformation type of algebraic surfaces, real and symplectic structures, from: "Symplectic –manifolds and algebraic surfaces" (editors F Catanese, G Tian), Lecture Notes in Math. 1938, Springer (2008) 55 | DOI

[16] K Corlette, C Simpson, On the classification of rank-two representations of quasiprojective fundamental groups, Compos. Math. 144 (2008) 1271 | DOI

[17] T Delzant, Trees, valuations and the Green–Lazarsfeld set, Geom. Funct. Anal. 18 (2008) 1236 | DOI

[18] T Delzant, Kähler groups, R–trees, and holomorphic families of Riemann surfaces, Geom. Funct. Anal. 26 (2016) 160 | DOI

[19] T Delzant, M Gromov, Cuts in Kähler groups, from: "Infinite groups: geometric, combinatorial and dynamical aspects" (editors L Bartholdi, T Ceccherini-Silberstein, T Smirnova-Nagnibeda, A Zuk), Progr. Math. 248, Birkhäuser (2005) 31 | DOI

[20] T Delzant, P Py, Cubulable Kähler groups, Geom. Topol. 23 (2019) 2125 | DOI

[21] A Dimca, Ş Papadima, A I Suciu, Non-finiteness properties of fundamental groups of smooth projective varieties, J. Reine Angew. Math. 629 (2009) 89 | DOI

[22] A Dimca, A I Suciu, Which 3–manifold groups are Kähler groups ?, J. Eur. Math. Soc. 11 (2009) 521 | DOI

[23] R Geoghegan, Topological methods in group theory, 243, Springer (2008) | DOI

[24] M Goresky, R Macpherson, Stratified Morse theory, 14, Springer (1988) | DOI

[25] M Gromov, Sur le groupe fondamental d’une variété kählérienne, C. R. Acad. Sci. Paris Sér. I Math. 308 (1989) 67

[26] F E A Johnson, E G Rees, On the fundamental group of a complex algebraic manifold, Bull. London Math. Soc. 19 (1987) 463 | DOI

[27] D H Kochloukova, On subdirect products of type FPm of limit groups, J. Group Theory 13 (2010) 1 | DOI

[28] D Kotschick, The deficiencies of Kähler groups, J. Topol. 5 (2012) 639 | DOI

[29] D Kotschick, Three-manifolds and Kähler groups, Ann. Inst. Fourier (Grenoble) 62 (2012) 1081 | DOI

[30] B Kuckuck, Subdirect products of groups and the n–(n + 1)–(n + 2) conjecture, Q. J. Math. 65 (2014) 1293 | DOI

[31] C Llosa Isenrich, Branched covers of elliptic curves and Kähler groups with exotic finiteness properties, Ann. Inst. Fourier (Grenoble) 69 (2019) 335 | DOI

[32] E J N Looijenga, Isolated singular points on complete intersections, 77, Cambridge Univ. Press (1984) | DOI

[33] F Oort, Y G Zarhin, Complex tori, Indag. Math. 7 (1996) 473 | DOI

[34] P Py, Coxeter groups and Kähler groups, Math. Proc. Cambridge Philos. Soc. 155 (2013) 557 | DOI

[35] J P Serre, Sur la topologie des variétés algébriques en caractéristique p, from: "Symposium internacional de topología algebraica", Universidad Nacional Autónoma de México (1958) 24

[36] Y T Siu, Strong rigidity for Kähler manifolds and the construction of bounded holomorphic functions, from: "Discrete groups in geometry and analysis" (editor R Howe), Progr. Math. 67, Birkhäuser (1987) 124 | DOI

Cité par Sources :