Khovanov homotopy type, Burnside category and products
Geometry & topology, Tome 24 (2020) no. 2, pp. 623-745.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give a new construction of a Khovanov stable homotopy type, or spectrum. We show that this construction gives a space stably homotopy equivalent to the Khovanov spectra constructed by Lipshitz and Sarkar  (J. Amer. Math. Soc. 27 (2014) 983–1042) and Hu, Kriz and Kriz (Topology Proc. 48 (2016) 327–360) and, as a corollary, that those two constructions give equivalent spectra. We show that the construction behaves well with respect to disjoint unions, connected sums and mirrors, verifying several of Lipshitz and Sarkar’s conjectures. Finally, combining these results with Lipshitz and Sarkar’s computations (J. Topol. 7 (2014) 817–848) and refined s–invariant (Duke Math. J. 163 (2014) 923–952), we obtain new results about the slice genera of certain knots.

DOI : 10.2140/gt.2020.24.623
Classification : 55P42, 57M25
Keywords: Khovanov homotopy, Khovanov homology, flow categories

Lawson, Tyler 1 ; Lipshitz, Robert 2 ; Sarkar, Sucharit 3

1 Department of Mathematics, University of Minnesota, Minneapolis, MN, United States
2 Department of Mathematics, University of Oregon, Eugene, OR, United States
3 Department of Mathematics, University of California at Los Angeles, Los Angeles, CA, United States
@article{GT_2020_24_2_a2,
     author = {Lawson, Tyler and Lipshitz, Robert and Sarkar, Sucharit},
     title = {Khovanov homotopy type, {Burnside} category and products},
     journal = {Geometry & topology},
     pages = {623--745},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2020},
     doi = {10.2140/gt.2020.24.623},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.623/}
}
TY  - JOUR
AU  - Lawson, Tyler
AU  - Lipshitz, Robert
AU  - Sarkar, Sucharit
TI  - Khovanov homotopy type, Burnside category and products
JO  - Geometry & topology
PY  - 2020
SP  - 623
EP  - 745
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.623/
DO  - 10.2140/gt.2020.24.623
ID  - GT_2020_24_2_a2
ER  - 
%0 Journal Article
%A Lawson, Tyler
%A Lipshitz, Robert
%A Sarkar, Sucharit
%T Khovanov homotopy type, Burnside category and products
%J Geometry & topology
%D 2020
%P 623-745
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.623/
%R 10.2140/gt.2020.24.623
%F GT_2020_24_2_a2
Lawson, Tyler; Lipshitz, Robert; Sarkar, Sucharit. Khovanov homotopy type, Burnside category and products. Geometry & topology, Tome 24 (2020) no. 2, pp. 623-745. doi : 10.2140/gt.2020.24.623. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.623/

[1] M Abouzaid, I Smith, Khovanov homology from Floer cohomology, J. Amer. Math. Soc. 32 (2019) 1 | DOI

[2] J F Adams, Stable homotopy and generalised homology, Univ. of Chicago Press (1974)

[3] J A Baldwin, W D Gillam, Computations of Heegaard–Floer knot homology, J. Knot Theory Ramifications 21 (2012) | DOI

[4] D Bar-Natan, Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9 (2005) 1443 | DOI

[5] D Bar-Natan, S Morrison, Others, The knot atlas, online resource (2005)

[6] J Bénabou, Introduction to bicategories, from: "Reports of the midwest category seminar" (editors A Dold, B Eckmann), Springer (1967) 1 | DOI

[7] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, 304, Springer (1972) | DOI

[8] S Cautis, J Kamnitzer, Knot homology via derived categories of coherent sheaves, I : The sl(2)–case, Duke Math. J. 142 (2008) 511 | DOI

[9] R L Cohen, J D S Jones, G B Segal, Floer’s infinite-dimensional Morse theory and homotopy theory, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 297 | DOI

[10] J M Cordier, Sur la notion de diagramme homotopiquement cohérent, Cahiers Topologie Géom. Différentielle 23 (1982) 93

[11] W G Dwyer, D M Kan, Simplicial localizations of categories, J. Pure Appl. Algebra 17 (1980) 267 | DOI

[12] A D Elmendorf, M A Mandell, Rings, modules, and algebras in infinite loop space theory, Adv. Math. 205 (2006) 163 | DOI

[13] B Everitt, R Lipshitz, S Sarkar, P Turner, Khovanov homotopy types and the Dold–Thom functor, Homology Homotopy Appl. 18 (2016) 177 | DOI

[14] B Everitt, P Turner, The homotopy theory of Khovanov homology, Algebr. Geom. Topol. 14 (2014) 2747 | DOI

[15] O Flint, B Fontaine, R Furmaniak, S Rankin, Knotilus, software (2006)

[16] A Floer, An instanton-invariant for 3–manifolds, Comm. Math. Phys. 118 (1988) 215 | DOI

[17] A Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988) 513 | DOI

[18] A Floer, The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math. 41 (1988) 775 | DOI

[19] J W Gray, Formal category theory : adjointness for 2–categories, 391, Springer (1974) | DOI

[20] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[21] J Hom, Z Wu, Four-ball genus bounds and a refinement of the Ozváth–Szabó tau invariant, J. Symplectic Geom. 14 (2016) 305 | DOI

[22] P Hu, D Kriz, I Kriz, Field theories, stable homotopy theory, and Khovanov homology, Topology Proc. 48 (2016) 327

[23] J R Isbell, On coherent algebras and strict algebras, J. Algebra 13 (1969) 299 | DOI

[24] M Jacobsson, An invariant of link cobordisms from Khovanov homology, Algebr. Geom. Topol. 4 (2004) 1211 | DOI

[25] K Jänich, On the classification of O(n)–manifolds, Math. Ann. 176 (1968) 53 | DOI

[26] M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359 | DOI

[27] M Khovanov, Patterns in knot cohomology, I, Experiment. Math. 12 (2003) 365 | DOI

[28] M Khovanov, An invariant of tangle cobordisms, Trans. Amer. Math. Soc. 358 (2006) 315 | DOI

[29] M Khovanov, Link homology and Frobenius extensions, Fund. Math. 190 (2006) 179 | DOI

[30] G Laures, On cobordism of manifolds with corners, Trans. Amer. Math. Soc. 352 (2000) 5667 | DOI

[31] E S Lee, An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005) 554 | DOI

[32] R D Leitch, The homotopy commutative cube, J. London Math. Soc. 9 (1974/75) 23 | DOI

[33] T Lidman, C Manolescu, The equivalence of two Seiberg–Witten Floer homologies, 399, Soc. Math. France (2018) | DOI

[34] J Lin, Pin(2)–equivariant KO–theory and intersection forms of spin 4–manifolds, Algebr. Geom. Topol. 15 (2015) 863 | DOI

[35] R Lipshitz, S Sarkar, A Khovanov stable homotopy type, J. Amer. Math. Soc. 27 (2014) 983 | DOI

[36] R Lipshitz, S Sarkar, A refinement of Rasmussen’s S–invariant, Duke Math. J. 163 (2014) 923 | DOI

[37] R Lipshitz, S Sarkar, A Steenrod square on Khovanov homology, J. Topol. 7 (2014) 817 | DOI

[38] C Livingston, A H Moore, Knotinfo: table of knot invariants, online resource (2019)

[39] J Lurie, Higher topos theory, 170, Princeton Univ. Press (2009) | DOI

[40] M A Mandell, J P May, S Schwede, B Shipley, Model categories of diagram spectra, Proc. London Math. Soc. 82 (2001) 441 | DOI

[41] C Manolescu, Seiberg–Witten–Floer stable homotopy type of three-manifolds with b1 = 0, Geom. Topol. 7 (2003) 889 | DOI

[42] C Manolescu, On the intersection forms of spin four-manifolds with boundary, Math. Ann. 359 (2014) 695 | DOI

[43] G Naot, The universal Khovanov link homology theory, Algebr. Geom. Topol. 6 (2006) 1863 | DOI

[44] S Ovchinnikov, Geometric representations of weak orders, from: "Uncertainty and intelligent information systems" (editors B Bouchon-Meunier, C Marsala, M Rifqi, R R Yager), World Sci. (2008) 447 | DOI

[45] P Ozsváth, J Rasmussen, Z Szabó, Odd Khovanov homology, preprint (2007)

[46] F Quinn, Lectures on axiomatic topological quantum field theory, from: "Geometry and quantum field theory" (editors D S Freed, K K Uhlenbeck), IAS/Park City Math. Ser. 1, Amer. Math. Soc. (1995) 323

[47] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)

[48] J Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419 | DOI

[49] C Seed, Computations of the Lipshitz–Sarkar Steenrod square on Khovanov homology, preprint (2012)

[50] C Seed, Knotkit, software (2014)

[51] G Segal, Categories and cohomology theories, Topology 13 (1974) 293 | DOI

[52] P Seidel, I Smith, A link invariant from the symplectic geometry of nilpotent slices, Duke Math. J. 134 (2006) 453 | DOI

[53] A N Shumakovitch, Patterns in odd Khovanov homology, J. Knot Theory Ramifications 20 (2011) 203 | DOI

[54] R M Switzer, Algebraic topology: homotopy and homology, 212, Springer (1975) | DOI

[55] P R Turner, Calculating Bar–Natan’s characteristic two Khovanov homology, J. Knot Theory Ramifications 15 (2006) 1335 | DOI

[56] P Turner, Khovanov homology and diagonalizable Frobenius algebras, J. Knot Theory Ramifications 29 (2020) | DOI

[57] R M Vogt, Homotopy limits and colimits, Math. Z. 134 (1973) 11 | DOI

[58] Y Wigderson, The Bar–Natan theory splits, J. Knot Theory Ramifications 25 (2016) | DOI

[59] G M Ziegler, Lectures on polytopes, 152, Springer (1995) | DOI

Cité par Sources :