Sutured manifolds and polynomial invariants from higher rank bundles
Geometry & topology, Tome 24 (2020) no. 1, pp. 49-178.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

For each integer N 2, Mariño and Moore defined generalized Donaldson invariants by the methods of quantum field theory, and made predictions about the values of these invariants. Subsequently, Kronheimer gave a rigorous definition of generalized Donaldson invariants using the moduli spaces of anti-self-dual connections on hermitian vector bundles of rank N. We confirm the predictions of Mariño and Moore for simply connected elliptic surfaces without multiple fibers and certain surfaces of general type in the case that N = 3. The primary motivation is to study 3–manifold instanton Floer homologies which are defined by higher rank bundles. In particular, the computation of the generalized Donaldson invariants is exploited to define a Floer homology theory for sutured 3–manifolds.

DOI : 10.2140/gt.2020.24.49
Classification : 57M27, 57R57, 57R58
Keywords: sutured manifolds, higher rank Donaldson invariants, instanton Floer homology, Smith conjecture

Daemi, Aliakbar 1 ; Xie, Yi 2

1 Simons Center for Geometry and Physics, State University of New York, Stony Brook, NY, United States
2 Beijing International Center for Mathematical Research, Peking University, Beijing, China
@article{GT_2020_24_1_a1,
     author = {Daemi, Aliakbar and Xie, Yi},
     title = {Sutured manifolds and polynomial invariants from higher rank bundles},
     journal = {Geometry & topology},
     pages = {49--178},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2020},
     doi = {10.2140/gt.2020.24.49},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.49/}
}
TY  - JOUR
AU  - Daemi, Aliakbar
AU  - Xie, Yi
TI  - Sutured manifolds and polynomial invariants from higher rank bundles
JO  - Geometry & topology
PY  - 2020
SP  - 49
EP  - 178
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.49/
DO  - 10.2140/gt.2020.24.49
ID  - GT_2020_24_1_a1
ER  - 
%0 Journal Article
%A Daemi, Aliakbar
%A Xie, Yi
%T Sutured manifolds and polynomial invariants from higher rank bundles
%J Geometry & topology
%D 2020
%P 49-178
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.49/
%R 10.2140/gt.2020.24.49
%F GT_2020_24_1_a1
Daemi, Aliakbar; Xie, Yi. Sutured manifolds and polynomial invariants from higher rank bundles. Geometry & topology, Tome 24 (2020) no. 1, pp. 49-178. doi : 10.2140/gt.2020.24.49. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.49/

[1] M F Atiyah, R Bott, The Yang–Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983) 523 | DOI

[2] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry, II, Math. Proc. Cambridge Philos. Soc. 78 (1975) 405 | DOI

[3] V Y Baranovskiĭ, The cohomology ring of the moduli space of stable bundles with odd determinant, Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994) 204

[4] H U Boden, Unitary representations of Brieskorn spheres, Duke Math. J. 75 (1994) 193 | DOI

[5] H U Boden, S Friedl, Metabelian SL(n, C) representations of knot groups, Pacific J. Math. 238 (2008) 7 | DOI

[6] H U Boden, C M Herald, P A Kirk, E P Klassen, Gauge theoretic invariants of Dehn surgeries on knots, Geom. Topol. 5 (2001) 143 | DOI

[7] A Borel, Topology of Lie groups and characteristic classes, Bull. Amer. Math. Soc. 61 (1955) 397 | DOI

[8] P J Braam, S K Donaldson, Floer’s work on instanton homology, knots and surgery, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 195 | DOI

[9] P J Braam, S K Donaldson, Fukaya–Floer homology and gluing formulae for polynomial invariants, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 257 | DOI

[10] V Colin, P Ghiggini, K Honda, Embedded contact homology and open book decompositions, preprint (2010)

[11] V Colin, P Ghiggini, K Honda, M Hutchings, Sutures and contact homology, I, Geom. Topol. 15 (2011) 1749 | DOI

[12] L H Culler, The blowup formula for higher rank Donaldson invariants, PhD thesis, Massachusetts Institute of Technology (2014)

[13] L Culler, A Daemi, Y Xie, Surgery, polygons and SU(N)–Floer Homology, preprint (2017)

[14] U V Desale, S Ramanan, Poincaré polynomials of the variety of stable bundles, Math. Ann. 216 (1975) 233 | DOI

[15] S K Donaldson, Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. 50 (1985) 1 | DOI

[16] S K Donaldson, The orientation of Yang–Mills moduli spaces and 4–manifold topology, J. Differential Geom. 26 (1987) 397 | DOI

[17] S K Donaldson, Polynomial invariants for smooth four-manifolds, Topology 29 (1990) 257 | DOI

[18] S K Donaldson, Floer homology and algebraic geometry, from: "Vector bundles in algebraic geometry" (editors N J Hitchin, P E Newstead, W M Oxbury), London Math. Soc. Lecture Note Ser. 208, Cambridge Univ. Press (1995) 119 | DOI

[19] S K Donaldson, Floer homology groups in Yang–Mills theory, 147, Cambridge Univ. Press (2002) | DOI

[20] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Clarendon (1990)

[21] S Dostoglou, D A Salamon, Self-dual instantons and holomorphic curves, Ann. of Math. 139 (1994) 581 | DOI

[22] J D Edelstein, M Gómez-Reino, M Mariño, Blowup formulae in Donaldson–Witten theory and integrable hierarchies, Adv. Theor. Math. Phys. 4 (2000) 503 | DOI

[23] P M N Feehan, T G Leness, Witten’s conjecture for many four-manifolds of simple type, J. Eur. Math. Soc. 17 (2015) 899 | DOI

[24] R Fintushel, R J Stern, Instanton homology of Seifert fibred homology three spheres, Proc. London Math. Soc. 61 (1990) 109 | DOI

[25] R Fintushel, R J Stern, Donaldson invariants of 4–manifolds with simple type, J. Differential Geom. 42 (1995) 577 | DOI

[26] R Fintushel, R J Stern, The blowup formula for Donaldson invariants, Ann. of Math. 143 (1996) 529 | DOI

[27] A Floer, An instanton-invariant for 3–manifolds, Comm. Math. Phys. 118 (1988) 215 | DOI

[28] A Floer, Instanton homology and Dehn surgery, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 77 | DOI

[29] S Friedl, Eta invariants as sliceness obstructions and their relation to Casson–Gordon invariants, Algebr. Geom. Topol. 4 (2004) 893 | DOI

[30] R Friedman, Rank two vector bundles over regular elliptic surfaces, Invent. Math. 96 (1989) 283 | DOI

[31] R Friedman, Vector bundles and SO(3)–invariants for elliptic surfaces, J. Amer. Math. Soc. 8 (1995) 29 | DOI

[32] R Friedman, J W Morgan, Smooth four-manifolds and complex surfaces, 27, Springer (1994) | DOI

[33] K Fukaya, Floer homology for oriented 3–manifolds, from: "Aspects of low-dimensional manifolds" (editors Y Matsumoto, S Morita), Adv. Stud. Pure Math. 20, Kinokuniya (1992) 1 | DOI

[34] D Gabai, Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445 | DOI

[35] D Gabai, Foliations and the topology of 3–manifolds, Bull. Amer. Math. Soc. 8 (1983) 77 | DOI

[36] D Gieseker, Geometric invariant theory and applications to moduli problems, from: "Invariant theory" (editor F Gherardelli), Lecture Notes in Math. 996, Springer (1983) 45 | DOI

[37] D Gieseker, A construction of stable bundles on an algebraic surface, J. Differential Geom. 27 (1988) 137 | DOI

[38] D Gieseker, J Li, Moduli of high rank vector bundles over surfaces, J. Amer. Math. Soc. 9 (1996) 107 | DOI

[39] R E Gompf, Nuclei of elliptic surfaces, Topology 30 (1991) 479 | DOI

[40] R E Gompf, A I Stipsicz, 4–manifolds and Kirby calculus, 20, Amer. Math. Soc. (1999) | DOI

[41] V Gritsenko, K Hulek, G K Sankaran, Abelianisation of orthogonal groups and the fundamental group of modular varieties, J. Algebra 322 (2009) 463 | DOI

[42] G Harder, M S Narasimhan, On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann. 212 (1974/75) 215 | DOI

[43] R Hartshorne, Algebraic geometry, 52, Springer (1977) | DOI

[44] M Hutchings, Embedded contact homology and its applications, from: "Proceedings of the International Congress of Mathematicians, II" (editors R Bhatia, A Pal, G Rangarajan, V Srinivas, M Vanninathan, P Gastesi), Hindustan Book Agency (2010) 1022

[45] M Hutchings, Lecture notes on embedded contact homology, from: "Contact and symplectic topology" (editors F Bourgeois, V Colin, A Stipsicz), Bolyai Soc. Math. Stud. 26, János Bolyai Math. Soc. (2014) 389 | DOI

[46] A Juhász, Holomorphic discs and sutured manifolds, Algebr. Geom. Topol. 6 (2006) 1429 | DOI

[47] A D King, P E Newstead, On the cohomology ring of the moduli space of rank 2 vector bundles on a curve, Topology 37 (1998) 407 | DOI

[48] R C Kirby Editor, Problems in low-dimensional topology, from: "Geometric topology, II" (editor W H Kazez), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 35

[49] K Kodaira, On compact complex analytic surfaces, I, Ann. of Math. 71 (1960) 111 | DOI

[50] D Kotschick, SO(3)–invariants for 4–manifolds with b2+ = 1, Proc. London Math. Soc. 63 (1991) 426 | DOI

[51] D Kotschick, J W Morgan, SO(3)–invariants for 4–manifolds with b2+ = 1, II, J. Differential Geom. 39 (1994) 433 | DOI

[52] P B Kronheimer, Four-manifold invariants from higher-rank bundles, J. Differential Geom. 70 (2005) 59 | DOI

[53] P B Kronheimer, T S Mrowka, Recurrence relations and asymptotics for four-manifold invariants, Bull. Amer. Math. Soc. 30 (1994) 215 | DOI

[54] P B Kronheimer, T S Mrowka, Embedded surfaces and the structure of Donaldson’s polynomial invariants, J. Differential Geom. 41 (1995) 573 | DOI

[55] P Kronheimer, T Mrowka, Monopoles and three-manifolds, 10, Cambridge Univ. Press (2007) | DOI

[56] P Kronheimer, T Mrowka, Knots, sutures, and excision, J. Differential Geom. 84 (2010) 301 | DOI

[57] P B Kronheimer, T S Mrowka, Khovanov homology is an unknot-detector, Publ. Math. Inst. Hautes Études Sci. 113 (2011) 97 | DOI

[58] P B Kronheimer, T S Mrowka, Knot homology groups from instantons, J. Topol. 4 (2011) 835 | DOI

[59] P B Kronheimer, T S Mrowka, Tait colorings, and an instanton homology for webs and foams, J. Eur. Math. Soc. 21 (2019) 55 | DOI

[60] C Kutluhan, S Sivek, C H Taubes, Sutured ECH is a natural invariant, preprint (2013)

[61] C Lebrun, Explicit self-dual metrics on CP2 # ⋯ # CP2, J. Differential Geom. 34 (1991) 223 | DOI

[62] W P Li, Z Qin, Stable vector bundles on algebraic surfaces, Trans. Amer. Math. Soc. 345 (1994) 833 | DOI

[63] P Lisca, Computations of instanton invariants using Donaldson–Floer theory, Invent. Math. 119 (1995) 347 | DOI

[64] M Mariño, G Moore, The Donaldson–Witten function for gauge groups of rank larger than one, Comm. Math. Phys. 199 (1998) 25 | DOI

[65] D Mcduff, D Salamon, J–holomorphic curves and symplectic topology, 52, Amer. Math. Soc. (2012)

[66] V B Mehta, A Ramanathan, Restriction of stable sheaves and representations of the fundamental group, Invent. Math. 77 (1984) 163 | DOI

[67] J W Morgan, H Bass, editors, The Smith conjecture, 112, Academic (1984)

[68] J W Morgan, T S Mrowka, A note on Donaldson’s polynomial invariants, Int. Math. Res. Not. 1992 (1992) 223 | DOI

[69] J W Morgan, T S Mrowka, The smooth classification of elliptic surfaces, from: "Geometry, topology, physics" (editor S T Yau), Conf. Proc. Lecture Notes Geom. Topology 4, International (1995) 246

[70] J W Morgan, T Mrowka, D Ruberman, The L2–moduli space and a vanishing theorem for Donaldson polynomial invariants, 2, International (1994)

[71] V Muñoz, Gluing formulae for Donaldson invariants for connected sums along surfaces, Asian J. Math. 1 (1997) 785 | DOI

[72] V Muñoz, Quantum cohomology of the moduli space of stable bundles over a Riemann surface, Duke Math. J. 98 (1999) 525 | DOI

[73] V Muñoz, Ring structure of the Floer cohomology of Σ × S1, Topology 38 (1999) 517 | DOI

[74] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027 | DOI

[75] Y Ruan, G Tian, A mathematical theory of quantum cohomology, J. Differential Geom. 42 (1995) 259 | DOI

[76] D Ruberman, Relations among Donaldson invariants arising from negative 2–spheres and tori, Duke Math. J. 83 (1996) 645 | DOI

[77] D A Salamon, Quantum products for mapping tori and the Atiyah–Floer conjecture, from: "Northern California Symplectic Geometry Seminar" (editors Y Eliashberg, D Fuchs, T Ratiu, A Weinstein), Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc. (1999) 199 | DOI

[78] B Siebert, G Tian, Recursive relations for the cohomology ring of moduli spaces of stable bundles, Turkish J. Math. 19 (1995) 131

[79] C H Taubes, Self-dual connections on 4–manifolds with indefinite intersection matrix, J. Differential Geom. 19 (1984) 517 | DOI

[80] C H Taubes, Casson’s invariant and gauge theory, J. Differential Geom. 31 (1990) 547 | DOI

[81] C H Taubes, L2 moduli spaces on 4–manifolds with cylindrical ends, 1, International (1993)

[82] W P Thurston, A norm for the homology of 3–manifolds, Mem. Amer. Math. Soc. 339, Amer. Math. Soc. (1986) 99 | DOI

[83] W Wieczorek, The Donaldson invariant and embedded 2–spheres, J. Reine Angew. Math. 489 (1997) 15 | DOI

[84] E Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769 | DOI

[85] Y Xie, On the framed singular instanton Floer homology from higher rank bundles, PhD thesis, Harvard University (2016)

[86] D Zagier, On the cohomology of moduli spaces of rank two vector bundles over curves, from: "The moduli space of curves" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 533 | DOI

Cité par Sources :