Min-max minimal disks with free boundary in Riemannian manifolds
Geometry & topology, Tome 24 (2020) no. 1, pp. 471-532.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We establish a min-max theory for constructing minimal disks with free boundary in any closed Riemannian manifold. The main result is an effective version of the partial Morse theory for minimal disks with free boundary established by Fraser. Our theory also includes as a special case the min-max theory for the Plateau problem of minimal disks, which can be used to generalize the famous work by Morse–Tompkins and Shiffman on minimal surfaces in n to the Riemannian setting.

More precisely, we generalize, to the free boundary setting, the min-max construction of minimal surfaces using harmonic replacement introduced by Colding–Minicozzi. As a key ingredient to this construction, we show an energy convexity for weakly harmonic maps with mixed Dirichlet and free boundaries from the half unit 2–disk in 2 into any closed Riemannian manifold, which in particular yields the uniqueness of such weakly harmonic maps. This is a free boundary analogue of the energy convexity and uniqueness for weakly harmonic maps with Dirichlet boundary on the unit 2–disk proved by Colding and Minicozzi.

DOI : 10.2140/gt.2020.24.471
Classification : 35R35, 49J35, 49Q05, 53C43
Keywords: minimal surface, free boundary, min-max

Lin, Longzhi 1 ; Sun, Ao 2 ; Zhou, Xin 3

1 Mathematics Department, University of California, Santa Cruz, Santa Cruz, CA, United States
2 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, United States
3 Department of Mathematics, University of California, Santa Barbara, Santa Barbara, CA, United States
@article{GT_2020_24_1_a7,
     author = {Lin, Longzhi and Sun, Ao and Zhou, Xin},
     title = {Min-max minimal disks with free boundary in {Riemannian} manifolds},
     journal = {Geometry & topology},
     pages = {471--532},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2020},
     doi = {10.2140/gt.2020.24.471},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.471/}
}
TY  - JOUR
AU  - Lin, Longzhi
AU  - Sun, Ao
AU  - Zhou, Xin
TI  - Min-max minimal disks with free boundary in Riemannian manifolds
JO  - Geometry & topology
PY  - 2020
SP  - 471
EP  - 532
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.471/
DO  - 10.2140/gt.2020.24.471
ID  - GT_2020_24_1_a7
ER  - 
%0 Journal Article
%A Lin, Longzhi
%A Sun, Ao
%A Zhou, Xin
%T Min-max minimal disks with free boundary in Riemannian manifolds
%J Geometry & topology
%D 2020
%P 471-532
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.471/
%R 10.2140/gt.2020.24.471
%F GT_2020_24_1_a7
Lin, Longzhi; Sun, Ao; Zhou, Xin. Min-max minimal disks with free boundary in Riemannian manifolds. Geometry & topology, Tome 24 (2020) no. 1, pp. 471-532. doi : 10.2140/gt.2020.24.471. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.471/

[1] D R Adams, A note on Riesz potentials, Duke Math. J. 42 (1975) 765

[2] F J Almgren Jr., The homotopy groups of the integral cycle groups, Topology 1 (1962) 257 | DOI

[3] F J Almgren Jr., The theory of varifolds, mimeographed notes (1965)

[4] J Chen, G Tian, Compactification of moduli space of harmonic mappings, Comment. Math. Helv. 74 (1999) 201 | DOI

[5] R Coifman, P L Lions, Y Meyer, S Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993) 247

[6] T H Colding, W P Minicozzi Ii, Width and finite extinction time of Ricci flow, Geom. Topol. 12 (2008) 2537 | DOI

[7] T H Colding, W P Minicozzi Ii, Width and mean curvature flow, Geom. Topol. 12 (2008) 2517 | DOI

[8] R Courant, Dirichlet’s principle, conformal mapping, and minimal surfaces, Springer (1977)

[9] R Courant, N Davids, Minimal surfaces spanning closed manifolds, Proc. Nat. Acad. Sci. U.S.A. 26 (1940) 194 | DOI

[10] C De Lellis, J Ramic, Min-max theory for minimal hypersurfaces with boundary, Ann. Inst. Fourier (Grenoble) 68 (2018) 1909

[11] W Ding, J Li, Q Liu, Evolution of minimal torus in Riemannian manifolds, Invent. Math. 165 (2006) 225 | DOI

[12] W Ding, G Tian, Energy identity for a class of approximate harmonic maps from surfaces, Comm. Anal. Geom. 3 (1995) 543 | DOI

[13] L C Evans, Partial differential equations, 19, Amer. Math. Soc. (2010) | DOI

[14] A M Fraser, On the free boundary variational problem for minimal disks, PhD thesis, Stanford University (1998)

[15] A M Fraser, On the free boundary variational problem for minimal disks, Comm. Pure Appl. Math. 53 (2000) 931 | DOI

[16] A Fraser, R Schoen, The first Steklov eigenvalue, conformal geometry, and minimal surfaces, Adv. Math. 226 (2011) 4011 | DOI

[17] A Fraser, R Schoen, Sharp eigenvalue bounds and minimal surfaces in the ball, Invent. Math. 203 (2016) 823 | DOI

[18] L Grafakos, Modern Fourier analysis, 250, Springer (2009) | DOI

[19] M Grüter, J Jost, On embedded minimal disks in convex bodies, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986) 345

[20] F Hélein, Harmonic maps, conservation laws and moving frames, 150, Cambridge Univ. Press (2002) | DOI

[21] J Hohrein, Existence of unstable minimal surfaces of higher genus in manifolds of nonpositive curvature, PhD thesis, Universität Heidelberg (1994)

[22] R A Hunt, On L(p,q) spaces, Enseign. Math. 12 (1966) 249

[23] T Iwaniec, G Martin, Geometric function theory and non-linear analysis, Oxford Univ. Press (2001)

[24] J Jost, Existence results for embedded minimal surfaces of controlled topological type, II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13 (1986) 401

[25] J Jost, Two-dimensional geometric variational problems, Wiley (1991)

[26] J Jost, L Liu, M Zhu, The qualitative behavior at the free boundary for approximate harmonic maps from surfaces, Math. Ann. 374 (2019) 133 | DOI

[27] T Lamm, L Lin, Estimates for the energy density of critical points of a class of conformally invariant variational problems, Adv. Calc. Var. 6 (2013) 391 | DOI

[28] P Laurain, Analyse des problèmes conformément invariants, from: "Séminaire Laurent Schwartz–Équations aux dérivées partielles et applications, 2016–2017" (editors F Golse, F Merle), Ed. Éc. Polytech. (2017) | DOI

[29] P Laurain, L Lin, Energy convexity of intrinsic bi-harmonic maps and applications, I: Spherical target, preprint (2018)

[30] P Laurain, R Petrides, Regularity and quantification for harmonic maps with free boundary, Adv. Calc. Var. 10 (2017) 69 | DOI

[31] M Li, X Zhou, Min-max theory for free boundary minimal hypersurfaces, I: Regularity theory, preprint (2016)

[32] F C Marques, A Neves, Min-max theory of minimal surfaces and applications, from: "Mathematical Congress of the Americas" (editors J A de la Peña, J A López-Mimbela, M Nakamura, J Petean), Contemp. Math. 656, Amer. Math. Soc. (2016) 13 | DOI

[33] R Montezuma, A mountain pass theorem for minimal hypersurfaces with fixed boundary, preprint (2018)

[34] M Morse, C Tompkins, The existence of minimal surfaces of general critical types, Ann. of Math. 40 (1939) 443 | DOI

[35] F Müller, A Schikorra, Boundary regularity via Uhlenbeck–Rivière decomposition, Analysis Munich 29 (2009) 199 | DOI

[36] T H Parker, Bubble tree convergence for harmonic maps, J. Differential Geom. 44 (1996) 595

[37] T H Parker, J G Wolfson, Pseudo-holomorphic maps and bubble trees, J. Geom. Anal. 3 (1993) 63 | DOI

[38] S Poornima, An embedding theorem for the Sobolev space W1,1, Bull. Sci. Math. 107 (1983) 253

[39] J Qing, Boundary regularity of weakly harmonic maps from surfaces, J. Funct. Anal. 114 (1993) 458 | DOI

[40] J Qing, G Tian, Bubbling of the heat flows for harmonic maps from surfaces, Comm. Pure Appl. Math. 50 (1997) 295 | DOI

[41] T Rivière, Conservation laws for conformally invariant variational problems, Invent. Math. 168 (2007) 1 | DOI

[42] T Rivière, Conformally invariant variational problems, preprint (2012)

[43] T Rivière, A viscosity method in the min-max theory of minimal surfaces, Publ. Math. Inst. Hautes Études Sci. 126 (2017) 177 | DOI

[44] T Rivière, M Struwe, Partial regularity for harmonic maps and related problems, Comm. Pure Appl. Math. 61 (2008) 451 | DOI

[45] J Sacks, K Uhlenbeck, The existence of minimal immersions of 2–spheres, Ann. of Math. 113 (1981) 1 | DOI

[46] C Scheven, Partial regularity for stationary harmonic maps at a free boundary, Math. Z. 253 (2006) 135 | DOI

[47] B Sharp, Higher integrability for solutions to a system of critical elliptic PDE, Methods Appl. Anal. 21 (2014) 221 | DOI

[48] B Sharp, M Zhu, Regularity at the free boundary for Dirac-harmonic maps from surfaces, Calc. Var. Partial Differential Equations 55 (2016) | DOI

[49] M Shiffman, The Plateau problem for non-relative minima, Ann. of Math. 40 (1939) 834 | DOI

[50] L Simon, Lectures on geometric measure theory, 3, Aust. National Univ. Centre for Mathematical Analysis (1983)

[51] B Smyth, Stationary minimal surfaces with boundary on a simplex, Invent. Math. 76 (1984) 411 | DOI

[52] M Struwe, On a free boundary problem for minimal surfaces, Invent. Math. 75 (1984) 547 | DOI

[53] M Struwe, Plateau’s problem and the calculus of variations, 35, Princeton Univ. Press (1988)

[54] M Struwe, Variational methods: applications to nonlinear partial differential equations and Hamiltonian systems, 34, Springer (2008)

[55] L Tartar, Imbedding theorems of Sobolev spaces into Lorentz spaces, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 1 (1998) 479

[56] H C Wente, An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl. 26 (1969) 318 | DOI

[57] R Ye, On the existence of area-minimizing surfaces with free boundary, Math. Z. 206 (1991) 321 | DOI

[58] X Zhou, On the existence of min-max minimal torus, J. Geom. Anal. 20 (2010) 1026 | DOI

[59] X Zhou, On the free boundary min-max geodesics, Int. Math. Res. Not. 2016 (2016) 1447 | DOI

[60] X Zhou, On the existence of min-max minimal surface of genus g ≥ 2, Commun. Contemp. Math. 19 (2017) | DOI

Cité par Sources :