Recognition of being fibered for compact 3–manifolds
Geometry & topology, Tome 24 (2020) no. 1, pp. 409-420.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let M be a compact orientable aspherical 3–manifold. We show that if the profinite completion of π1(M) is isomorphic to the profinite completion of a free-by-cyclic group or to the profinite completion of a surface-by-cyclic group, then M fibers over the circle with compact fiber.

DOI : 10.2140/gt.2020.24.409
Classification : 57M27, 20E18, 20J05, 57M05
Keywords: fibered $3$–manifold, profinite rigidity, cohomological goodness

Jaikin-Zapirain, Andrei 1

1 Departamento de Matemáticas, University Autónoma de Madrid and Instituto de Ciencias Matemáticas, Madrid, Spain
@article{GT_2020_24_1_a5,
     author = {Jaikin-Zapirain, Andrei},
     title = {Recognition of being fibered for compact 3{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {409--420},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2020},
     doi = {10.2140/gt.2020.24.409},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.409/}
}
TY  - JOUR
AU  - Jaikin-Zapirain, Andrei
TI  - Recognition of being fibered for compact 3–manifolds
JO  - Geometry & topology
PY  - 2020
SP  - 409
EP  - 420
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.409/
DO  - 10.2140/gt.2020.24.409
ID  - GT_2020_24_1_a5
ER  - 
%0 Journal Article
%A Jaikin-Zapirain, Andrei
%T Recognition of being fibered for compact 3–manifolds
%J Geometry & topology
%D 2020
%P 409-420
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.409/
%R 10.2140/gt.2020.24.409
%F GT_2020_24_1_a5
Jaikin-Zapirain, Andrei. Recognition of being fibered for compact 3–manifolds. Geometry & topology, Tome 24 (2020) no. 1, pp. 409-420. doi : 10.2140/gt.2020.24.409. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.409/

[1] I Agol, Criteria for virtual fibering, J. Topol. 1 (2008) 269 | DOI

[2] I Agol, The virtual Haken conjecture, Doc. Math. 18 (2013) 1045

[3] M Aschenbrenner, S Friedl, H Wilton, 3–Manifold groups, Eur. Math. Soc. (2015) | DOI

[4] M Boileau, S Friedl, The profinite completion of 3–manifold groups, fiberedness and the Thurston norm, preprint (2015)

[5] M Bridson, A Reid, Profinite rigidity, fibering, and the figure-eight knot, preprint (2015)

[6] M R Bridson, A W Reid, H Wilton, Profinite rigidity and surface bundles over the circle, Bull. Lond. Math. Soc. 49 (2017) 831 | DOI

[7] W Cavendish, Finite-sheeted covering spaces and solenoids over 3–manifolds, PhD thesis, Princeton University (2012)

[8] S Friedl, S Vidussi, A vanishing theorem for twisted Alexander polynomials with applications to symplectic 4–manifolds, J. Eur. Math. Soc. 15 (2013) 2027 | DOI

[9] F Grunewald, A Jaikin-Zapirain, A G S Pinto, P A Zalesskii, Normal subgroups of profinite groups of non-negative deficiency, J. Pure Appl. Algebra 218 (2014) 804 | DOI

[10] F Grunewald, A Jaikin-Zapirain, P A Zalesskii, Cohomological goodness and the profinite completion of Bianchi groups, Duke Math. J. 144 (2008) 53 | DOI

[11] A Jaikin-Zapirain, L2–Betti numbers and their analogues in positive characteristic, from: "Groups St Andrews 2017 in Birmingham" (editors C M Campbell, C W Parker, M R Quick, E F Robertson, C M Roney-Dougal), London Math. Soc. Lecture Note Ser. 455, Cambridge Univ. Press (2019) 346 | DOI

[12] D H Kochloukova, P A Zalesskii, Profinite and pro-p completions of Poincaré duality groups of dimension 3, Trans. Amer. Math. Soc. 360 (2008) 1927 | DOI

[13] K Lorensen, Groups with the same cohomology as their profinite completions, J. Algebra 320 (2008) 1704 | DOI

[14] P Przytycki, D T Wise, Separability of embedded surfaces in 3–manifolds, Compos. Math. 150 (2014) 1623 | DOI

[15] A W Reid, Profinite rigidity, from: "Proceedings of the International Congress of Mathematicians" (editors B Sirakov, P N d Souza, M Viana), World Sci. (2018) 1211

[16] J P Serre, Galois cohomology, Springer (2002) | DOI

[17] J Stallings, On fibering certain 3–manifolds, from: "Topology of -manifolds and related topics" (editor J M. K. Fort), Prentice-Hall (1962) 95

[18] D T Wise, Research announcement: the structure of groups with a quasiconvex hierarchy, Electron. Res. Announc. Math. Sci. 16 (2009) 44 | DOI

Cité par Sources :