GL2ℝ–invariant measures in marked strata : generic marked points, Earle–Kra for strata and illumination
Geometry & topology, Tome 24 (2020) no. 1, pp. 373-408.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that nontrivial GL(2, )–invariant point markings for translation surfaces in strata of abelian differentials exist only when the translation surface belongs to a hyperelliptic component. As an application, we establish constraints on sections of the universal curve restricted to orbifold covers of subvarieties of the moduli space of Riemann surfaces that contain a Teichmüller disk. We also solve the finite blocking problem for generic translation surfaces.

DOI : 10.2140/gt.2020.24.373
Classification : 30F60, 32G15, 37F30
Keywords: dynamics on Teichmüller space, flat surfaces, translation surfaces

Apisa, Paul 1

1 Department of Mathematics, University of Chicago, Chicago, IL, United States, Department of Mathematics, Yale University, New Haven, CT, United States
@article{GT_2020_24_1_a4,
     author = {Apisa, Paul},
     title = {GL2\ensuremath{\mathbb{R}}{\textendash}invariant measures in marked strata : generic marked points, {Earle{\textendash}Kra} for strata and illumination},
     journal = {Geometry & topology},
     pages = {373--408},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2020},
     doi = {10.2140/gt.2020.24.373},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.373/}
}
TY  - JOUR
AU  - Apisa, Paul
TI  - GL2ℝ–invariant measures in marked strata : generic marked points, Earle–Kra for strata and illumination
JO  - Geometry & topology
PY  - 2020
SP  - 373
EP  - 408
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.373/
DO  - 10.2140/gt.2020.24.373
ID  - GT_2020_24_1_a4
ER  - 
%0 Journal Article
%A Apisa, Paul
%T GL2ℝ–invariant measures in marked strata : generic marked points, Earle–Kra for strata and illumination
%J Geometry & topology
%D 2020
%P 373-408
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.373/
%R 10.2140/gt.2020.24.373
%F GT_2020_24_1_a4
Apisa, Paul. GL2ℝ–invariant measures in marked strata : generic marked points, Earle–Kra for strata and illumination. Geometry & topology, Tome 24 (2020) no. 1, pp. 373-408. doi : 10.2140/gt.2020.24.373. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.373/

[1] P Apisa, Periodic points in genus two : holomorphic sections over Hilbert modular varieties, Teichmüller dynamics, and billiards, preprint (2017)

[2] P Apisa, GL2R orbit closures in hyperelliptic components of strata, Duke Math. J. 167 (2018) 679 | DOI

[3] P Apisa, A Wright, Marked points on translation surfaces, preprint (2017)

[4] A Avila, A Eskin, M Möller, Symplectic and isometric SL(2, R)–invariant subbundles of the Hodge bundle, J. Reine Angew. Math. 732 (2017) 1 | DOI

[5] F Cukierman, Families of Weierstrass points, Duke Math. J. 58 (1989) 317 | DOI

[6] C J Earle, I Kra, On sections of some holomorphic families of closed Riemann surfaces, Acta Math. 137 (1976) 49 | DOI

[7] A Eskin, S Filip, A Wright, The algebraic hull of the Kontsevich–Zorich cocycle, Ann. of Math. 188 (2018) 281 | DOI

[8] A Eskin, M Mirzakhani, Invariant and stationary measures for the SL(2, R) action on moduli space, Publ. Math. Inst. Hautes Études Sci. 127 (2018) 95 | DOI

[9] A Eskin, M Mirzakhani, A Mohammadi, Isolation, equidistribution, and orbit closures for the SL(2, R) action on moduli space, Ann. of Math. 182 (2015) 673 | DOI

[10] G Farkas, A Verra, The universal theta divisor over the moduli space of curves, J. Math. Pures Appl. 100 (2013) 591 | DOI

[11] S Filip, Splitting mixed Hodge structures over affine invariant manifolds, Ann. of Math. 183 (2016) 681 | DOI

[12] Q Gendron, The Deligne–Mumford and the incidence variety compactifications of the strata of ΩMg, Ann. Inst. Fourier (Grenoble) 68 (2018) 1169 | DOI

[13] S Grushevsky, D Zakharov, The double ramification cycle and the theta divisor, Proc. Amer. Math. Soc. 142 (2014) 4053 | DOI

[14] J Hubbard, Sur la non-existence de sections analytiques à la courbe universelle de Teichmüller, C. R. Acad. Sci. Paris Sér. A-B 274 (1972) 978

[15] M Kontsevich, A Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math. 153 (2003) 631 | DOI

[16] A Kumar, R E Mukamel, Real multiplication through explicit correspondences, LMS J. Comput. Math. 19 (2016) 29 | DOI

[17] S Lelièvre, T Monteil, B Weiss, Everything is illuminated, Geom. Topol. 20 (2016) 1737 | DOI

[18] H Masur, Interval exchange transformations and measured foliations, Ann. of Math. 115 (1982) 169 | DOI

[19] H Masur, Closed trajectories for quadratic differentials with an application to billiards, Duke Math. J. 53 (1986) 307 | DOI

[20] C T Mcmullen, Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc. 16 (2003) 857 | DOI

[21] C T Mcmullen, Teichmüller curves in genus two : discriminant and spin, Math. Ann. 333 (2005) 87 | DOI

[22] C T Mcmullen, Teichmüller curves in genus two : torsion divisors and ratios of sines, Invent. Math. 165 (2006) 651 | DOI

[23] C T Mcmullen, Dynamics of SL2(R) over moduli space in genus two, Ann. of Math. 165 (2007) 397 | DOI

[24] M Mirzakhani, A Wright, The boundary of an affine invariant submanifold, Invent. Math. 209 (2017) 927 | DOI

[25] M Mirzakhani, A Wright, Full-rank affine invariant submanifolds, Duke Math. J. 167 (2018) 1 | DOI

[26] S Mullane, On the effective cone of Mg,n, Adv. Math. 320 (2017) 500 | DOI

[27] F Müller, The pullback of a theta divisor to Mg,n, Math. Nachr. 286 (2013) 1255 | DOI

[28] W A Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. 115 (1982) 201 | DOI

[29] A Wright, Cylinder deformations in orbit closures of translation surfaces, Geom. Topol. 19 (2015) 413 | DOI

[30] A N Zemlyakov, A B Katok, Topological transitivity of billiards in polygons, Mat. Zametki 18 (1975) 291

[31] A Zorich, Flat surfaces, from: "Frontiers in number theory, physics, and geometry, I" (editors P Cartier, B Julia, P Moussa, P Vanhove), Springer (2006) 437

Cité par Sources :