HF = HM, V : Seiberg–Witten Floer homology and handle additions
Geometry & topology, Tome 24 (2020) no. 7, pp. 3471-3748.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This is the last of five papers that construct an isomorphism between the Seiberg–Witten Floer homology and the Heegaard Floer homology of a given compact, oriented 3–manifold. See Theorem 1.4 for a precise statement. As outlined in paper I (Geom. Topol. 24 (2020) 2829–2854), this isomorphism is given as a composition of three isomorphisms. In this article, we establish the third isomorphism, which relates the Seiberg–Witten Floer homology on the auxiliary manifold with the appropriate version of Seiberg–Witten Floer homology on the original manifold. This constitutes Theorem 4.1 in paper I, restated in a more refined form as Theorem 1.1 below. The tool used in the proof is a filtered variant of the connected sum formula for Seiberg–Witten Floer homology, in special cases where one of the summand manifolds is S1 × S2 (referred to as “handle-addition” in all five articles in this series). Nevertheless, the arguments leading to the aforementioned connected sum formula are general enough to establish a connected sum formula in the wider context of Seiberg–Witten Floer homology with nonbalanced perturbations. This is stated as Proposition 6.7 here. Although what is asserted in this proposition has been known to experts for some time, a detailed proof has not appeared in the literature, and therefore of some independent interest.

DOI : 10.2140/gt.2020.24.3471
Classification : 53C07, 57R57, 57R58, 52C15
Keywords: Seiberg–Witten, Floer homology, pseudoholomorphic curves

Kutluhan, Çağatay 1 ; Lee, Yi-Jen 2 ; Taubes, Clifford 3

1 Department of Mathematics, University at Buffalo, Buffalo, NY, United States
2 Institute of Mathematical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
3 Department of Mathematics, Harvard University, Cambridge, MA, United States
@article{GT_2020_24_7_a1,
     author = {Kutluhan, \c{C}a\u{g}atay and Lee, Yi-Jen and Taubes, Clifford},
     title = {HF = {HM,} {V} : {Seiberg{\textendash}Witten} {Floer} homology and handle additions},
     journal = {Geometry & topology},
     pages = {3471--3748},
     publisher = {mathdoc},
     volume = {24},
     number = {7},
     year = {2020},
     doi = {10.2140/gt.2020.24.3471},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.3471/}
}
TY  - JOUR
AU  - Kutluhan, Çağatay
AU  - Lee, Yi-Jen
AU  - Taubes, Clifford
TI  - HF = HM, V : Seiberg–Witten Floer homology and handle additions
JO  - Geometry & topology
PY  - 2020
SP  - 3471
EP  - 3748
VL  - 24
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.3471/
DO  - 10.2140/gt.2020.24.3471
ID  - GT_2020_24_7_a1
ER  - 
%0 Journal Article
%A Kutluhan, Çağatay
%A Lee, Yi-Jen
%A Taubes, Clifford
%T HF = HM, V : Seiberg–Witten Floer homology and handle additions
%J Geometry & topology
%D 2020
%P 3471-3748
%V 24
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.3471/
%R 10.2140/gt.2020.24.3471
%F GT_2020_24_7_a1
Kutluhan, Çağatay; Lee, Yi-Jen; Taubes, Clifford. HF = HM, V : Seiberg–Witten Floer homology and handle additions. Geometry & topology, Tome 24 (2020) no. 7, pp. 3471-3748. doi : 10.2140/gt.2020.24.3471. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.3471/

[1] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry, I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43 | DOI

[2] J Bloom, T Mrowka, P Ozsváth, A Künneth formula for monopole Floer homology, in preparation

[3] R Bott, L W Tu, Differential forms in algebraic topology, 82, Springer (1982) | DOI

[4] H Cartan, La transgression dans un groupe de Lie et dans un espace fibré principal, from: "Colloque de topologie (espaces fibrés)", Georges Thone (1951) 57

[5] V Colin, P Ghiggini, K Honda, M Hutchings, Sutures and contact homology, I, Geom. Topol. 15 (2011) 1749 | DOI

[6] S K Donaldson, The Seiberg–Witten equations and 4–manifold topology, Bull. Amer. Math. Soc. 33 (1996) 45 | DOI

[7] S K Donaldson, Floer homology groups in Yang–Mills theory, 147, Cambridge Univ. Press (2002) | DOI

[8] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Oxford Univ. Press (1990)

[9] K Fukaya, Floer homology of connected sum of homology 3–spheres, Topology 35 (1996) 89 | DOI

[10] M Goresky, R Kottwitz, R Macpherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998) 25 | DOI

[11] K Honda, Transversality theorems for harmonic forms, Rocky Mountain J. Math. 34 (2004) 629 | DOI

[12] M Hutchings, C H Taubes, Gluing pseudoholomorphic curves along branched covered cylinders, II, J. Symplectic Geom. 7 (2009) 29 | DOI

[13] J D S Jones, Cyclic homology and equivariant homology, Invent. Math. 87 (1987) 403 | DOI

[14] A Juhász, Holomorphic discs and sutured manifolds, Algebr. Geom. Topol. 6 (2006) 1429 | DOI

[15] J L Koszul, Sur un type d’algèbres différentielles en rapport avec la transgression, from: "Colloque de topologie (espaces fibrés)", Georges Thone (1951) 73

[16] P B Kronheimer, C Manolescu, Periodic Floer pro-spectra from the Seiberg–Witten equations, preprint (2002)

[17] P Kronheimer, T Mrowka, Monopoles and three-manifolds, 10, Cambridge Univ Press (2007) | DOI

[18] P Kronheimer, T Mrowka, Knots, sutures, and excision, J. Differential Geom. 84 (2010) 301 | DOI

[19] Ç Kutluhan, Y J Lee, C H Taubes, HF = HM, I : Heegaard Floer homology and Seiberg–Witten Floer homology, Geom. Topol. 24 (2020) 2829 | DOI

[20] Ç Kutluhan, Y J Lee, C H Taubes, HF = HM, II : Reeb orbits and holomorphic curves for the ech/Heegaard–Floer correspondence, Geom. Topol. 24 (2020) 2855 | DOI

[21] Ç Kutluhan, Y J Lee, C H Taubes, HF = HM, III : Holomorphic curves and the differential for the ech/Heegaard Floer correspondence, Geom. Topol. 24 (2020) 3013 | DOI

[22] Ç Kutluhan, Y J Lee, C H Taubes, HF = HM, IV : The Seiberg–Witten Floer homology and ech correspondence, Geom. Topol. 24 (2020) 3219 | DOI

[23] Y J Lee, Heegaard splittings and Seiberg–Witten monopoles, from: "Geometry and topology of manifolds" (editors H U Boden, I Hambleton, A J Nicas, B D Park), Fields Inst. Commun. 47, Amer. Math. Soc. (2005) 173

[24] Y J Lee, Reidemeister torsion in Floer–Novikov theory and counting pseudoholomorphic tori, I, J. Symplectic Geom. 3 (2005) 221 | DOI

[25] Y J Lee, C H Taubes, Periodic Floer homology and Seiberg–Witten–Floer cohomology, J. Symplectic Geom. 10 (2012) 81 | DOI

[26] K Lefèvre-Hasegawa, Sur les A∞–catègories, PhD thesis, Université Paris 7 (2003)

[27] C Manolescu, Seiberg–Witten–Floer stable homotopy type of three-manifolds with b1 = 0, Geom. Topol. 7 (2003) 889 | DOI

[28] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. 159 (2004) 1159 | DOI

[29] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027 | DOI

[30] C H Taubes, SW ⇒ Gr : from the Seiberg–Witten equations to pseudo-holomorphic curves, J. Amer. Math. Soc. 9 (1996) 845 | DOI

[31] C H Taubes, Seiberg Witten and Gromov invariants for symplectic 4–manifolds, 2, International (2000)

[32] C H Taubes, Asymptotic spectral flow for Dirac operators, Comm. Anal. Geom. 15 (2007) 569 | DOI

[33] C H Taubes, The Seiberg–Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007) 2117 | DOI

[34] C H Taubes, The Seiberg–Witten equations and the Weinstein conjecture, II : More closed integral curves of the Reeb vector field, Geom. Topol. 13 (2009) 1337 | DOI

[35] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, I, Geom. Topol. 14 (2010) 2497 | DOI

[36] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, II, Geom. Topol. 14 (2010) 2583 | DOI

[37] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, III, Geom. Topol. 14 (2010) 2721 | DOI

[38] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, IV, Geom. Topol. 14 (2010) 2819 | DOI

[39] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, V, Geom. Topol. 14 (2010) 2961 | DOI

[40] D Toledo, Y L L Tong, Duality and intersection theory in complex manifolds, I, Math. Ann. 237 (1978) 41 | DOI

Cité par Sources :