Compact hyperbolic manifolds without spin structures
Geometry & topology, Tome 24 (2020) no. 5, pp. 2647-2674.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We exhibit the first examples of compact, orientable, hyperbolic manifolds that do not have any spin structure. We show that such manifolds exist in all dimensions n 4.

The core of the argument is the construction of a compact, oriented, hyperbolic 4–manifold M that contains a surface S of genus 3 with self-intersection 1. The 4–manifold M has an odd intersection form and is hence not spin. It is built by carefully assembling some right-angled 120–cells along a pattern inspired by the minimum trisection of 2.

The manifold M is also the first example of a compact, orientable, hyperbolic 4–manifold satisfying either of these conditions:

DOI : 10.2140/gt.2020.24.2647
Classification : 57M50, 57N16, 57R15
Keywords: nonspin, compact, hyperbolic, manifold, $120$–cell

Martelli, Bruno 1 ; Riolo, Stefano 2 ; Slavich, Leone 1

1 Dipartimento di Matematica, Università di Pisa, Pisa, Italy
2 Institut de mathématiques, Université de Neuchâtel, Neuchâtel, Switzerland
@article{GT_2020_24_5_a7,
     author = {Martelli, Bruno and Riolo, Stefano and Slavich, Leone},
     title = {Compact hyperbolic manifolds without spin structures},
     journal = {Geometry & topology},
     pages = {2647--2674},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2020},
     doi = {10.2140/gt.2020.24.2647},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2647/}
}
TY  - JOUR
AU  - Martelli, Bruno
AU  - Riolo, Stefano
AU  - Slavich, Leone
TI  - Compact hyperbolic manifolds without spin structures
JO  - Geometry & topology
PY  - 2020
SP  - 2647
EP  - 2674
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2647/
DO  - 10.2140/gt.2020.24.2647
ID  - GT_2020_24_5_a7
ER  - 
%0 Journal Article
%A Martelli, Bruno
%A Riolo, Stefano
%A Slavich, Leone
%T Compact hyperbolic manifolds without spin structures
%J Geometry & topology
%D 2020
%P 2647-2674
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2647/
%R 10.2140/gt.2020.24.2647
%F GT_2020_24_5_a7
Martelli, Bruno; Riolo, Stefano; Slavich, Leone. Compact hyperbolic manifolds without spin structures. Geometry & topology, Tome 24 (2020) no. 5, pp. 2647-2674. doi : 10.2140/gt.2020.24.2647. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2647/

[1] L Auslander, R H Szczarba, Characteristic classes of compact solvmanifolds, Ann. of Math. 76 (1962) 1 | DOI

[2] R Benedetti, P Lisca, Framing 3–manifolds with bare hands, Enseign. Math. 64 (2018) 395 | DOI

[3] N Bergeron, F Haglund, D T Wise, Hyperplane sections in arithmetic hyperbolic manifolds, J. Lond. Math. Soc. 83 (2011) 431 | DOI

[4] N Bergeron, J Millson, C Moeglin, Hodge type theorems for arithmetic hyperbolic manifolds, from: "Geometry, analysis and probability" (editors J B Bost, H Hofer, F Labourie, Y Le Jan, X Ma), Progr. Math. 310, Birkhäuser (2017) 47 | DOI

[5] B H Bowditch, G Mess, A 4–dimensional Kleinian group, Trans. Amer. Math. Soc. 344 (1994) 391 | DOI

[6] V O Bugaenko, Groups of automorphisms of unimodular hyperbolic quadratic forms over the ring Z[( + 1)∕2], Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1984 (1984) 6

[7] S E Cappell, J L Shaneson, Embeddings and immersions of four-dimensional manifolds in R6, from: "Geometric topology" (editor J C Cantrell), Academic (1979) 301 | DOI

[8] M W Davis, A hyperbolic 4–manifold, Proc. Amer. Math. Soc. 93 (1985) 325 | DOI

[9] P Deligne, D Sullivan, Fibrés vectoriels complexes à groupe structural discret, C. R. Acad. Sci. Paris Sér. A-B 281 (1975) 1081

[10] D B A Epstein, C Petronio, An exposition of Poincaré’s polyhedron theorem, Enseign. Math. 40 (1994) 113

[11] M Gromov, H B Lawson Jr., W Thurston, Hyperbolic 4–manifolds and conformally flat 3–manifolds, Inst. Hautes Études Sci. Publ. Math. 68 (1988) 27 | DOI

[12] A Haefliger, Sur l’extension du groupe structural d’une espace fibré, C. R. Acad. Sci. Paris 243 (1956) 558

[13] M Kapovich, L Potyagailo, È Vinberg, Noncoherence of some lattices in Isom(Hn), from: "The Zieschang Gedenkschrift" (editors M Boileau, M Scharlemann, R Weidmann), Geom. Topol. Monogr. 14, Geom. Topol. (2008) 335 | DOI

[14] A Kolpakov, B Martelli, S Tschantz, Some hyperbolic three-manifolds that bound geometrically, Proc. Amer. Math. Soc. 143 (2015) 4103 | DOI

[15] A Kolpakov, A W Reid, L Slavich, Embedding arithmetic hyperbolic manifolds, Math. Res. Lett. 25 (2018) 1305 | DOI

[16] N H Kuiper, Hyperbolic 4–manifolds and tesselations, Inst. Hautes Études Sci. Publ. Math. 68 (1988) 47 | DOI

[17] D D Long, A W Reid, Virtually spinning hyperbolic manifolds, Proc. Edinb. Math. Soc. 63 (2020) 305 | DOI

[18] J Ma, F Zheng, Orientable hyperbolic 4–manifolds over the 120–cell, preprint (2018)

[19] B Martelli, Hyperbolic three-manifolds that embed geodesically, preprint (2015)

[20] B Martelli, Hyperbolic four-manifolds, from: "Handbook of group actions, III" (editors L Ji, A Papadopoulos, S T Yau), Adv. Lect. Math. 40, International (2018) 37

[21] D W Morris, Introduction to arithmetic groups, Deductive (2015)

[22] D Panov, A Petrunin, Telescopic actions, Geom. Funct. Anal. 22 (2012) 1814 | DOI

[23] J G Ratcliffe, D Ruberman, S T Tschantz, Harmonic spinors on the Davis hyperbolic 4–manifold, J. Topol. Anal. (2019) | DOI

[24] J G Ratcliffe, S T Tschantz, On the Davis hyperbolic 4–manifold, Topology Appl. 111 (2001) 327 | DOI

[25] A Scorpan, The wild world of 4–manifolds, Amer. Math. Soc. (2005)

[26] D Sullivan, Hyperbolic geometry and homeomorphisms, from: "Geometric topology" (editor J C Cantrell), Academic (1979) 543 | DOI

[27] È B Vinberg, O V Shvartsman, Discrete groups of motions of spaces of constant curvature, from: "Geometry, II" (editor È Vinberg), Encycl. Math. Sci. 29, Springer (1993) 139 | DOI

Cité par Sources :