Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We exhibit the first examples of compact, orientable, hyperbolic manifolds that do not have any spin structure. We show that such manifolds exist in all dimensions .
The core of the argument is the construction of a compact, oriented, hyperbolic –manifold that contains a surface of genus with self-intersection . The –manifold has an odd intersection form and is hence not spin. It is built by carefully assembling some right-angled –cells along a pattern inspired by the minimum trisection of .
The manifold is also the first example of a compact, orientable, hyperbolic –manifold satisfying either of these conditions:
Martelli, Bruno 1 ; Riolo, Stefano 2 ; Slavich, Leone 1
@article{GT_2020_24_5_a7, author = {Martelli, Bruno and Riolo, Stefano and Slavich, Leone}, title = {Compact hyperbolic manifolds without spin structures}, journal = {Geometry & topology}, pages = {2647--2674}, publisher = {mathdoc}, volume = {24}, number = {5}, year = {2020}, doi = {10.2140/gt.2020.24.2647}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2647/} }
TY - JOUR AU - Martelli, Bruno AU - Riolo, Stefano AU - Slavich, Leone TI - Compact hyperbolic manifolds without spin structures JO - Geometry & topology PY - 2020 SP - 2647 EP - 2674 VL - 24 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2647/ DO - 10.2140/gt.2020.24.2647 ID - GT_2020_24_5_a7 ER -
%0 Journal Article %A Martelli, Bruno %A Riolo, Stefano %A Slavich, Leone %T Compact hyperbolic manifolds without spin structures %J Geometry & topology %D 2020 %P 2647-2674 %V 24 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2647/ %R 10.2140/gt.2020.24.2647 %F GT_2020_24_5_a7
Martelli, Bruno; Riolo, Stefano; Slavich, Leone. Compact hyperbolic manifolds without spin structures. Geometry & topology, Tome 24 (2020) no. 5, pp. 2647-2674. doi : 10.2140/gt.2020.24.2647. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2647/
[1] Characteristic classes of compact solvmanifolds, Ann. of Math. 76 (1962) 1 | DOI
, ,[2] Framing 3–manifolds with bare hands, Enseign. Math. 64 (2018) 395 | DOI
, ,[3] Hyperplane sections in arithmetic hyperbolic manifolds, J. Lond. Math. Soc. 83 (2011) 431 | DOI
, , ,[4] Hodge type theorems for arithmetic hyperbolic manifolds, from: "Geometry, analysis and probability" (editors J B Bost, H Hofer, F Labourie, Y Le Jan, X Ma), Progr. Math. 310, Birkhäuser (2017) 47 | DOI
, , ,[5] A 4–dimensional Kleinian group, Trans. Amer. Math. Soc. 344 (1994) 391 | DOI
, ,[6] Groups of automorphisms of unimodular hyperbolic quadratic forms over the ring Z[( + 1)∕2], Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1984 (1984) 6
,[7] Embeddings and immersions of four-dimensional manifolds in R6, from: "Geometric topology" (editor J C Cantrell), Academic (1979) 301 | DOI
, ,[8] A hyperbolic 4–manifold, Proc. Amer. Math. Soc. 93 (1985) 325 | DOI
,[9] Fibrés vectoriels complexes à groupe structural discret, C. R. Acad. Sci. Paris Sér. A-B 281 (1975) 1081
, ,[10] An exposition of Poincaré’s polyhedron theorem, Enseign. Math. 40 (1994) 113
, ,[11] Hyperbolic 4–manifolds and conformally flat 3–manifolds, Inst. Hautes Études Sci. Publ. Math. 68 (1988) 27 | DOI
, , ,[12] Sur l’extension du groupe structural d’une espace fibré, C. R. Acad. Sci. Paris 243 (1956) 558
,[13] Noncoherence of some lattices in Isom(Hn), from: "The Zieschang Gedenkschrift" (editors M Boileau, M Scharlemann, R Weidmann), Geom. Topol. Monogr. 14, Geom. Topol. (2008) 335 | DOI
, , ,[14] Some hyperbolic three-manifolds that bound geometrically, Proc. Amer. Math. Soc. 143 (2015) 4103 | DOI
, , ,[15] Embedding arithmetic hyperbolic manifolds, Math. Res. Lett. 25 (2018) 1305 | DOI
, , ,[16] Hyperbolic 4–manifolds and tesselations, Inst. Hautes Études Sci. Publ. Math. 68 (1988) 47 | DOI
,[17] Virtually spinning hyperbolic manifolds, Proc. Edinb. Math. Soc. 63 (2020) 305 | DOI
, ,[18] Orientable hyperbolic 4–manifolds over the 120–cell, preprint (2018)
, ,[19] Hyperbolic three-manifolds that embed geodesically, preprint (2015)
,[20] Hyperbolic four-manifolds, from: "Handbook of group actions, III" (editors L Ji, A Papadopoulos, S T Yau), Adv. Lect. Math. 40, International (2018) 37
,[21] Introduction to arithmetic groups, Deductive (2015)
,[22] Telescopic actions, Geom. Funct. Anal. 22 (2012) 1814 | DOI
, ,[23] Harmonic spinors on the Davis hyperbolic 4–manifold, J. Topol. Anal. (2019) | DOI
, , ,[24] On the Davis hyperbolic 4–manifold, Topology Appl. 111 (2001) 327 | DOI
, ,[25] The wild world of 4–manifolds, Amer. Math. Soc. (2005)
,[26] Hyperbolic geometry and homeomorphisms, from: "Geometric topology" (editor J C Cantrell), Academic (1979) 543 | DOI
,[27] Discrete groups of motions of spaces of constant curvature, from: "Geometry, II" (editor È Vinberg), Encycl. Math. Sci. 29, Springer (1993) 139 | DOI
, ,Cité par Sources :