Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that the minimum number of critical points of a Weinstein Morse function on a Weinstein domain of dimension at least six is at most two more than the minimum number of critical points of a smooth Morse function on that domain; if the domain has nonzero middle-dimensional homology, these two numbers agree. There is also an upper bound on the number of gradient trajectories between critical points in smoothly trivial Weinstein cobordisms. As an application, we show that the number of generators for the Grothendieck group of the wrapped Fukaya category is at most the number of generators for singular cohomology and hence vanishes for any Weinstein ball. We also give a topological obstruction to the existence of finite-dimensional representations of the Chekanov–Eliashberg DGA for Legendrians.
Lazarev, Oleg 1
@article{GT_2020_24_5_a6, author = {Lazarev, Oleg}, title = {Simplifying {Weinstein} {Morse} functions}, journal = {Geometry & topology}, pages = {2603--2646}, publisher = {mathdoc}, volume = {24}, number = {5}, year = {2020}, doi = {10.2140/gt.2020.24.2603}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2603/} }
Lazarev, Oleg. Simplifying Weinstein Morse functions. Geometry & topology, Tome 24 (2020) no. 5, pp. 2603-2646. doi : 10.2140/gt.2020.24.2603. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2603/
[1] An open string analogue of Viterbo functoriality, Geom. Topol. 14 (2010) 627 | DOI
, ,[2] On Legendrian embeddings into open book decompositions, Ark. Mat. 57 (2019) 227 | DOI
, ,[3] Effect of Legendrian surgery, Geom. Topol. 16 (2012) 301 | DOI
, , ,[4] Legendrian fronts for affine varieties, Duke Math. J. 168 (2019) 225 | DOI
, ,[5] Geometric criteria for overtwistedness, J. Amer. Math. Soc. 32 (2019) 563 | DOI
, , ,[6] Geometric generation of the wrapped Fukaya category of Weinstein manifolds and sectors, preprint (2017)
, , , ,[7] From Stein to Weinstein and back : symplectic geometry of affine complex manifolds, 59, Amer. Math. Soc. (2012) | DOI
, ,[8] Legendrian ambient surgery and Legendrian contact homology, J. Symplectic Geom. 14 (2016) 811 | DOI
,[9] Estimating the number of Reeb chords using a linear representation of the characteristic algebra, Algebr. Geom. Topol. 15 (2015) 2887 | DOI
, ,[10] The persistence of the Chekanov–Eliashberg algebra, preprint (2018)
, ,[11] Non-isotopic Legendrian submanifolds in R2n+1, J. Differential Geom. 71 (2005) 85 | DOI
, , ,[12] Legendrian contact homology in P × R, Trans. Amer. Math. Soc. 359 (2007) 3301 | DOI
, , ,[13] Legendrian knots and exact Lagrangian cobordisms, J. Eur. Math. Soc. 18 (2016) 2627 | DOI
, , ,[14] Duality between Lagrangian and Legendrian invariants, preprint (2017)
, ,[15] Topological characterization of Stein manifolds of dimension > 2, Int. J. Math. 1 (1990) 29 | DOI
,[16] Unique holomorphically fillable contact structure on the 3–torus, Int. Math. Res. Not. 1996 (1996) 77 | DOI
,[17] Symplectic geometry of plurisubharmonic functions, from: "Gauge theory and symplectic geometry" (editors J Hurtubise, F Lalonde, G Sabidussi), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 488, Kluwer (1997) 49 | DOI
,[18] Flexible Lagrangians, Int. Math. Res. Not. 2020 (2020) 2408 | DOI
, , ,[19] Lagrangian caps, Geom. Funct. Anal. 23 (2013) 1483 | DOI
, ,[20] Legendrian contact homology in R3, preprint (2018)
, ,[21] Minifolds and phantoms, preprint (2013)
, , , ,[22] Symplectic cohomology and duality for the wrapped Fukaya category, PhD thesis, Massachusetts Institute of Technology (2012)
,[23] Sectorial descent for wrapped Fukaya categories, preprint (2018)
, , ,[24] An introduction to contact topology, 109, Cambridge Univ. Press (2008) | DOI
,[25] Subcritical contact surgeries and the topology of symplectic fillings, J. Éc. Polytech. Math. 3 (2016) 163 | DOI
, , ,[26] Geometric phantom categories, Publ. Math. Inst. Hautes Études Sci. 117 (2013) 329 | DOI
, ,[27] Introduction to A–infinity algebras and modules, Homology Homotopy Appl. 3 (2001) 1 | DOI
,[28] Contact manifolds with flexible fillings, Geom. Funct. Anal. 30 (2020) 188 | DOI
,[29] H–principles for regular Lagrangians, J. Symplectic Geom. 18 (2020) 1071 | DOI
,[30] Maximal contact and symplectic structures, J. Topol. 13 (2020) 1058 | DOI
,[31] Augmentations and rulings of Legendrian links in #k(S1 × S2), Pacific J. Math. 288 (2017) 381 | DOI
,[32] Lefschetz fibrations and symplectic homology, Geom. Topol. 13 (2009) 1877 | DOI
,[33] Loose Legendrian embeddings in high dimensional contact manifolds, preprint (2012)
,[34] Subflexible symplectic manifolds, Geom. Topol. 22 (2018) 2367 | DOI
, ,[35] Computable Legendrian invariants, Topology 42 (2003) 55 | DOI
,[36] A biased view of symplectic cohomology, from: "Current developments in mathematics" (editors B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), International (2008) 211
,[37] The symplectic topology of Ramanujam’s surface, Comment. Math. Helv. 80 (2005) 859 | DOI
, ,[38] The contact homology of Legendrian knots with maximal Thurston–Bennequin invariant, J. Symplectic Geom. 11 (2013) 167 | DOI
,[39] On the structure of manifolds, Amer. J. Math. 84 (1962) 387 | DOI
,[40] Strongly fillable contact manifolds and J–holomorphic foliations, Duke Math. J. 151 (2010) 337 | DOI
,[41] Vanishing of symplectic homology and obstruction to flexible fillability, Int. Math. Res. Not. 2020 (2020) 9717 | DOI
,Cité par Sources :