Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We propose a new method to compute asymptotics of periods using tropical geometry, in which the Riemann zeta values appear naturally as error terms in tropicalization. Our method suggests how the Gamma class should arise from the Strominger–Yau–Zaslow conjecture. We use it to give a new proof of (a version of) the Gamma conjecture for Batyrev pairs of mirror Calabi–Yau hypersurfaces.
Abouzaid, Mohammed 1 ; Ganatra, Sheel 2 ; Iritani, Hiroshi 3 ; Sheridan, Nick 4
@article{GT_2020_24_5_a5, author = {Abouzaid, Mohammed and Ganatra, Sheel and Iritani, Hiroshi and Sheridan, Nick}, title = {The {Gamma} and {Strominger{\textendash}Yau{\textendash}Zaslow} conjectures : a tropical approach to periods}, journal = {Geometry & topology}, pages = {2547--2602}, publisher = {mathdoc}, volume = {24}, number = {5}, year = {2020}, doi = {10.2140/gt.2020.24.2547}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2547/} }
TY - JOUR AU - Abouzaid, Mohammed AU - Ganatra, Sheel AU - Iritani, Hiroshi AU - Sheridan, Nick TI - The Gamma and Strominger–Yau–Zaslow conjectures : a tropical approach to periods JO - Geometry & topology PY - 2020 SP - 2547 EP - 2602 VL - 24 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2547/ DO - 10.2140/gt.2020.24.2547 ID - GT_2020_24_5_a5 ER -
%0 Journal Article %A Abouzaid, Mohammed %A Ganatra, Sheel %A Iritani, Hiroshi %A Sheridan, Nick %T The Gamma and Strominger–Yau–Zaslow conjectures : a tropical approach to periods %J Geometry & topology %D 2020 %P 2547-2602 %V 24 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2547/ %R 10.2140/gt.2020.24.2547 %F GT_2020_24_5_a5
Abouzaid, Mohammed; Ganatra, Sheel; Iritani, Hiroshi; Sheridan, Nick. The Gamma and Strominger–Yau–Zaslow conjectures : a tropical approach to periods. Geometry & topology, Tome 24 (2020) no. 5, pp. 2547-2602. doi : 10.2140/gt.2020.24.2547. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2547/
[1] Homogeneous coordinate rings and mirror symmetry for toric varieties, Geom. Topol. 10 (2006) 1097 | DOI
,[2] Morse homology, tropical geometry, and homological mirror symmetry for toric varieties, Selecta Math. 15 (2009) 189 | DOI
,[3] Apéry limits of differential equations of order 4 and 5, from: "Modular forms and string duality" (editors N Yui, H Verrill, C F Doran), Fields Inst. Commun. 54, Amer. Math. Soc. (2008) 105
, , ,[4] Mirror symmetry and T–duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. 1 (2007) 51
,[5] Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties, J. Algebraic Geom. 3 (1994) 493
,[6] Mellin–Barnes integrals as Fourier–Mukai transforms, Adv. Math. 207 (2006) 876 | DOI
, ,[7] A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991) 21 | DOI
, , , ,[8] Conifold transitions via affine geometry and mirror symmetry, Geom. Topol. 18 (2014) 1769 | DOI
, ,[9] Toric varieties, 124, Amer. Math. Soc. (2011) | DOI
, , ,[10] Local behavior of Hodge structures at infinity, from: "Mirror symmetry, II" (editors B Greene, S T Yau), AMS/IP Stud. Adv. Math. 1, Amer. Math. Soc. (1997) 683
,[11] Sur une nouvelle méthode pour la détermination des intégrales multiples, J. Math. Pures Appl. 1 (1839) 164
,[12] Geometry and analytic theory of Frobenius manifolds, from: "Proceedings of the International Congress of Mathematicians, II" (editors G Fischer, U Rehmann), Deutsche Mathematiker Vereinigung (1998) 315
,[13] Monodromy calculations of fourth order equations of Calabi–Yau type, from: "Mirror symmetry, V" (editors N Yui, S T Yau, J D Lewis), AMS/IP Stud. Adv. Math. 38, Amer. Math. Soc. (2006) 539
, ,[14] Central charges of T–dual branes for toric varieties, Trans. Amer. Math. Soc. 373 (2020) 3829 | DOI
,[15] T–duality and homological mirror symmetry for toric varieties, Adv. Math. 229 (2012) 1875 | DOI
, , , ,[16] Gamma II for toric varieties from integrals on T–dual branes and homological mirror symmetry, preprint (2019)
, ,[17] Gamma classes and quantum cohomology of Fano manifolds : gamma conjectures, Duke Math. J. 165 (2016) 2005 | DOI
, , ,[18] Gamma conjecture via mirror symmetry, from: "Primitive forms and related subjects" (editors K Hori, C Li, S Li, K Saito), Adv. Stud. Pure Math. 83, Math. Soc. Japan (2019) 55 | DOI
, ,[19] Deresonating a Tate period, preprint (2009)
,[20] Topological mirror symmetry, Invent. Math. 144 (2001) 75 | DOI
,[21] Mirror symmetry and the Strominger–Yau–Zaslow conjecture, from: "Current developments in mathematics" (editors D Jerison, M Kisin, T Mrowka, R Stanley, H T Yau, S T Yau), International (2013) 133 | DOI
,[22] From real affine geometry to complex geometry, Ann. of Math. 174 (2011) 1301 | DOI
, ,[23] Moment maps and combinatorial invariants of Hamiltonian Tn–spaces, 122, Birkhäuser (1994) | DOI
,[24] Monodromy of monomially admissible Fukaya–Seidel categories mirror to toric varieties, Adv. Math. 350 (2019) 662 | DOI
,[25] Hypergeometric functions and mirror symmetry in toric varieties, PhD thesis, Duke University (1999)
,[26] Central charges, symplectic forms, and hypergeometric series in local mirror symmetry, from: "Mirror symmetry, V" (editors N Yui, S T Yau, J D Lewis), AMS/IP Stud. Adv. Math. 38, Amer. Math. Soc. (2006) 405
,[27] Mirror symmetry, mirror map and applications to complete intersection Calabi–Yau spaces, Nuclear Phys. B 433 (1995) 501 | DOI
, , , ,[28] An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009) 1016 | DOI
,[29] Quantum cohomology and periods, Ann. Inst. Fourier (Grenoble) 61 (2011) 2909 | DOI
,[30] Integration over tropical plane curves and ultradiscretization, Int. Math. Res. Not. 2010 (2010) 112 | DOI
,[31] Singularities of special Lagrangian fibrations and the SYZ conjecture, Comm. Anal. Geom. 11 (2003) 859 | DOI
,[32] Hodge theoretic aspects of mirror symmetry, from: "From Hodge theory to integrability and TQFT –geometry" (editors R Y Donagi, K Wendland), Proc. Sympos. Pure Math. 78, Amer. Math. Soc. (2008) 87 | DOI
, , ,[33] Affine structures and non–Archimedean analytic spaces, from: "The unity of mathematics" (editors P Etingof, V Retakh, I M Singer), Progr. Math. 244, Birkhäuser (2006) 321 | DOI
, ,[34] Chern classes and the periods of mirrors, Math. Res. Lett. 6 (1999) 141 | DOI
,[35] Lagrangian submanifolds from tropical hypersurfaces, preprint (2018)
,[36] Decomposition into pairs-of-pants for complex algebraic hypersurfaces, Topology 43 (2004) 1035 | DOI
,[37] Examples of tropical-to-Lagrangian correspondence, Eur. J. Math. 5 (2019) 1033 | DOI
,[38] Tropical curves, their Jacobians and theta functions, from: "Curves and abelian varieties" (editors V Alexeev, A Beauville, C H Clemens, E Izadi), Contemp. Math. 465, Amer. Math. Soc. (2008) 203 | DOI
, ,[39] Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians, J. Amer. Math. Soc. 6 (1993) 223 | DOI
,[40] How to compute ∑ 1∕n2 by solving triangles, Amer. Math. Monthly 115 (2008) 745 | DOI
,[41] Amoebas, Monge–Ampère measures, and triangulations of the Newton polytope, Duke Math. J. 121 (2004) 481 | DOI
, ,[42] Lagrangian torus fibrations and mirror symmetry of Calabi–Yau manifolds, from: "Symplectic geometry and mirror symmetry" (editors K Fukaya, Y G Oh, K Ono, G Tian), World Sci. (2001) 385 | DOI
,[43] Period integrals from wall structures via tropical cycles, canonical coordinates in mirror symmetry and analyticity of toric degenerations, Publ. Math. Inst. Hautes Études Sci. 132 (2020) 1 | DOI
, ,[44] An analogue of Dubrovin’s conjecture, Ann. Inst. Fourier (Grenoble) 70 (2020) 621 | DOI
, ,[45] Fukaya A∞–structures associated to Lefschetz fibrations, II1∕2, Adv. Theor. Math. Phys. 20 (2016) 883 | DOI
,[46] Mirror symmetry is T–duality, Nuclear Phys. B 479 (1996) 243 | DOI
, , ,[47] Wolfram Cloud, software (2014)
,[48] Periods of tropical Calabi–Yau hypersurfaces, preprint (2018)
,Cité par Sources :