Knot Floer homology and the unknotting number
Geometry & topology, Tome 24 (2020) no. 5, pp. 2435-2469.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a knot K S3, let u(K) (respectively, u+(K)) denote the minimum number of negative (respectively, positive) crossing changes among all unknotting sequences for K. We use knot Floer homology to construct the invariants 𝔩(K), 𝔩+(K) and 𝔩(K), which give lower bounds on u(K), u+(K) and the unknotting number u(K), respectively. The invariant 𝔩(K) only vanishes for the unknot, and satisfies 𝔩(K) ν+(K), while the difference 𝔩(K) ν+(K) can be arbitrarily large. We also present several applications towards bounding the unknotting number, the alteration number and the Gordian distance.

DOI : 10.2140/gt.2020.24.2435
Classification : 57M27
Keywords: knot, unknotting number, knot Floer homology, torsion

Alishahi, Akram 1 ; Eftekhary, Eaman 2

1 Department of Mathematics, University of Georgia, Athens, GA, United States
2 School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
@article{GT_2020_24_5_a3,
     author = {Alishahi, Akram and Eftekhary, Eaman},
     title = {Knot {Floer} homology and the unknotting number},
     journal = {Geometry & topology},
     pages = {2435--2469},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2020},
     doi = {10.2140/gt.2020.24.2435},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2435/}
}
TY  - JOUR
AU  - Alishahi, Akram
AU  - Eftekhary, Eaman
TI  - Knot Floer homology and the unknotting number
JO  - Geometry & topology
PY  - 2020
SP  - 2435
EP  - 2469
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2435/
DO  - 10.2140/gt.2020.24.2435
ID  - GT_2020_24_5_a3
ER  - 
%0 Journal Article
%A Alishahi, Akram
%A Eftekhary, Eaman
%T Knot Floer homology and the unknotting number
%J Geometry & topology
%D 2020
%P 2435-2469
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2435/
%R 10.2140/gt.2020.24.2435
%F GT_2020_24_5_a3
Alishahi, Akram; Eftekhary, Eaman. Knot Floer homology and the unknotting number. Geometry & topology, Tome 24 (2020) no. 5, pp. 2435-2469. doi : 10.2140/gt.2020.24.2435. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2435/

[1] A Alishahi, Unknotting number and Khovanov homology, Pacific J. Math. 301 (2019) 15 | DOI

[2] A Alishahi, N Dowlin, The Lee spectral sequence, unknotting number, and the knight move conjecture, Topology Appl. 254 (2019) 29 | DOI

[3] A S Alishahi, E Eftekhary, A refinement of sutured Floer homology, J. Symplectic Geom. 13 (2015) 609 | DOI

[4] A Alishahi, E Eftekhary, Tangle Floer homology and cobordisms between tangles, J. Topol. 13 (2020) 1582 | DOI

[5] M Borodzik, C Livingston, Semigroups, d–invariants and deformations of cuspidal singular points of plane curves, J. Lond. Math. Soc. 93 (2016) 439 | DOI

[6] P Feller, Gordian adjacency for torus knots, Algebr. Geom. Topol. 14 (2014) 769 | DOI

[7] P Feller, D Krcatovich, On cobordisms between knots, braid index, and the upsilon-invariant, Math. Ann. 369 (2017) 301 | DOI

[8] P Feller, S Pohlmann, R Zentner, Alternation numbers of torus knots with small braid index, Indiana Univ. Math. J. 67 (2018) 645 | DOI

[9] J Hanselman, L Watson, Cabling in terms of immersed curves, preprint (2019)

[10] J Hom, A note on the concordance invariants epsilon and upsilon, Proc. Amer. Math. Soc. 144 (2016) 897 | DOI

[11] J Hom, A S Levine, T Lidman, Knot concordance in homology cobordisms, preprint (2018)

[12] J Hom, T Lidman, N Zufelt, Reducible surgeries and Heegaard Floer homology, Math. Res. Lett. 22 (2015) 763 | DOI

[13] J Hom, Z Wu, Four-ball genus bounds and a refinement of the Ozváth–Szabó tau invariant, J. Symplectic Geom. 14 (2016) 305 | DOI

[14] K Jin, A M Lowrance, E Polston, Y Zheng, The Turaev genus of torus knots, J. Knot Theory Ramifications 26 (2017) | DOI

[15] D Krcatovich, Software for CFK∞ of 1–1 knots

[16] P B Kronheimer, T S Mrowka, Gauge theory for embedded surfaces, I, Topology 32 (1993) 773 | DOI

[17] M Lackenby, Elementary knot theory, from: "Lectures on geometry" (editor N M J Woodhouse), Oxford Univ. Press (2017) 29 | DOI

[18] J Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969) 229 | DOI

[19] C Livingston, Notes on the knot concordance invariant upsilon, Algebr. Geom. Topol. 17 (2017) 111 | DOI

[20] C Livingston, A H Moore, KnotInfo: table of knot invariants, electronic reference (2004)

[21] Y Ni, Z Wu, Cosmetic surgeries on knots in S3, J. Reine Angew. Math. 706 (2015) 1 | DOI

[22] P S Ozsváth, A I Stipsicz, Z Szabó, Concordance homomorphisms from knot Floer homology, Adv. Math. 315 (2017) 366 | DOI

[23] P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615 | DOI

[24] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 | DOI

[25] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. 159 (2004) 1159 | DOI

[26] P Ozsváth, Z Szabó, On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281 | DOI

[27] P Ozsváth, Z Szabó, Holomorphic disks, link invariants and the multi-variable Alexander polynomial, Algebr. Geom. Topol. 8 (2008) 615 | DOI

[28] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)

[29] J Rasmussen, Lens space surgeries and a conjecture of Goda and Teragaito, Geom. Topol. 8 (2004) 1013 | DOI

[30] J Rasmussen, Knot polynomials and knot homologies, from: "Geometry and topology of manifolds" (editors H U Boden, I Hambleton, A J Nicas, B D Park), Fields Inst. Commun. 47, Amer. Math. Soc. (2005) 261 | DOI

[31] J Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419 | DOI

[32] M G Scharlemann, Unknotting number one knots are prime, Invent. Math. 82 (1985) 37 | DOI

[33] A G Tristram, Some cobordism invariants for links, Proc. Cambridge Philos. Soc. 66 (1969) 251 | DOI

[34] I Zemke, Link cobordisms and absolute gradings on link Floer homology, Quantum Topol. 10 (2019) 207 | DOI

Cité par Sources :