Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a knot , let (respectively, ) denote the minimum number of negative (respectively, positive) crossing changes among all unknotting sequences for . We use knot Floer homology to construct the invariants , and , which give lower bounds on , and the unknotting number , respectively. The invariant only vanishes for the unknot, and satisfies , while the difference can be arbitrarily large. We also present several applications towards bounding the unknotting number, the alteration number and the Gordian distance.
Alishahi, Akram 1 ; Eftekhary, Eaman 2
@article{GT_2020_24_5_a3, author = {Alishahi, Akram and Eftekhary, Eaman}, title = {Knot {Floer} homology and the unknotting number}, journal = {Geometry & topology}, pages = {2435--2469}, publisher = {mathdoc}, volume = {24}, number = {5}, year = {2020}, doi = {10.2140/gt.2020.24.2435}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2435/} }
TY - JOUR AU - Alishahi, Akram AU - Eftekhary, Eaman TI - Knot Floer homology and the unknotting number JO - Geometry & topology PY - 2020 SP - 2435 EP - 2469 VL - 24 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2435/ DO - 10.2140/gt.2020.24.2435 ID - GT_2020_24_5_a3 ER -
Alishahi, Akram; Eftekhary, Eaman. Knot Floer homology and the unknotting number. Geometry & topology, Tome 24 (2020) no. 5, pp. 2435-2469. doi : 10.2140/gt.2020.24.2435. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2435/
[1] Unknotting number and Khovanov homology, Pacific J. Math. 301 (2019) 15 | DOI
,[2] The Lee spectral sequence, unknotting number, and the knight move conjecture, Topology Appl. 254 (2019) 29 | DOI
, ,[3] A refinement of sutured Floer homology, J. Symplectic Geom. 13 (2015) 609 | DOI
, ,[4] Tangle Floer homology and cobordisms between tangles, J. Topol. 13 (2020) 1582 | DOI
, ,[5] Semigroups, d–invariants and deformations of cuspidal singular points of plane curves, J. Lond. Math. Soc. 93 (2016) 439 | DOI
, ,[6] Gordian adjacency for torus knots, Algebr. Geom. Topol. 14 (2014) 769 | DOI
,[7] On cobordisms between knots, braid index, and the upsilon-invariant, Math. Ann. 369 (2017) 301 | DOI
, ,[8] Alternation numbers of torus knots with small braid index, Indiana Univ. Math. J. 67 (2018) 645 | DOI
, , ,[9] Cabling in terms of immersed curves, preprint (2019)
, ,[10] A note on the concordance invariants epsilon and upsilon, Proc. Amer. Math. Soc. 144 (2016) 897 | DOI
,[11] Knot concordance in homology cobordisms, preprint (2018)
, , ,[12] Reducible surgeries and Heegaard Floer homology, Math. Res. Lett. 22 (2015) 763 | DOI
, , ,[13] Four-ball genus bounds and a refinement of the Ozváth–Szabó tau invariant, J. Symplectic Geom. 14 (2016) 305 | DOI
, ,[14] The Turaev genus of torus knots, J. Knot Theory Ramifications 26 (2017) | DOI
, , , ,[15] Software for CFK∞ of 1–1 knots
,[16] Gauge theory for embedded surfaces, I, Topology 32 (1993) 773 | DOI
, ,[17] Elementary knot theory, from: "Lectures on geometry" (editor N M J Woodhouse), Oxford Univ. Press (2017) 29 | DOI
,[18] Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969) 229 | DOI
,[19] Notes on the knot concordance invariant upsilon, Algebr. Geom. Topol. 17 (2017) 111 | DOI
,[20] KnotInfo: table of knot invariants, electronic reference (2004)
, ,[21] Cosmetic surgeries on knots in S3, J. Reine Angew. Math. 706 (2015) 1 | DOI
, ,[22] Concordance homomorphisms from knot Floer homology, Adv. Math. 315 (2017) 366 | DOI
, , ,[23] Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615 | DOI
, ,[24] Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 | DOI
, ,[25] Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. 159 (2004) 1159 | DOI
, ,[26] On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281 | DOI
, ,[27] Holomorphic disks, link invariants and the multi-variable Alexander polynomial, Algebr. Geom. Topol. 8 (2008) 615 | DOI
, ,[28] Floer homology and knot complements, PhD thesis, Harvard University (2003)
,[29] Lens space surgeries and a conjecture of Goda and Teragaito, Geom. Topol. 8 (2004) 1013 | DOI
,[30] Knot polynomials and knot homologies, from: "Geometry and topology of manifolds" (editors H U Boden, I Hambleton, A J Nicas, B D Park), Fields Inst. Commun. 47, Amer. Math. Soc. (2005) 261 | DOI
,[31] Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419 | DOI
,[32] Unknotting number one knots are prime, Invent. Math. 82 (1985) 37 | DOI
,[33] Some cobordism invariants for links, Proc. Cambridge Philos. Soc. 66 (1969) 251 | DOI
,[34] Link cobordisms and absolute gradings on link Floer homology, Quantum Topol. 10 (2019) 207 | DOI
,Cité par Sources :