Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We develop a version of Hodge theory for a large class of smooth formally proper quotient stacks analogous to Hodge theory for smooth projective schemes. We show that the noncommutative Hodge–de Rham sequence for the category of equivariant coherent sheaves degenerates. This spectral sequence converges to the periodic cyclic homology, which we canonically identify with the topological equivariant –theory of with respect to a maximal compact subgroup of , equipping the latter with a canonical pure Hodge structure. We also establish Hodge–de Rham degeneration for categories of matrix factorizations for a large class of equivariant Landau–Ginzburg models.
Halpern-Leistner, Daniel 1 ; Pomerleano, Daniel 2
@article{GT_2020_24_5_a2, author = {Halpern-Leistner, Daniel and Pomerleano, Daniel}, title = {Equivariant {Hodge} theory and noncommutative geometry}, journal = {Geometry & topology}, pages = {2361--2433}, publisher = {mathdoc}, volume = {24}, number = {5}, year = {2020}, doi = {10.2140/gt.2020.24.2361}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2361/} }
TY - JOUR AU - Halpern-Leistner, Daniel AU - Pomerleano, Daniel TI - Equivariant Hodge theory and noncommutative geometry JO - Geometry & topology PY - 2020 SP - 2361 EP - 2433 VL - 24 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2361/ DO - 10.2140/gt.2020.24.2361 ID - GT_2020_24_5_a2 ER -
%0 Journal Article %A Halpern-Leistner, Daniel %A Pomerleano, Daniel %T Equivariant Hodge theory and noncommutative geometry %J Geometry & topology %D 2020 %P 2361-2433 %V 24 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2361/ %R 10.2140/gt.2020.24.2361 %F GT_2020_24_5_a2
Halpern-Leistner, Daniel; Pomerleano, Daniel. Equivariant Hodge theory and noncommutative geometry. Geometry & topology, Tome 24 (2020) no. 5, pp. 2361-2433. doi : 10.2140/gt.2020.24.2361. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2361/
[1] Equivariant K–theory and completion, J. Differential Geom. 3 (1969) 1 | DOI
, ,[2] Orbifold cohomology as periodic cyclic homology, Int. J. Math. 14 (2003) 791 | DOI
,[3] The Stacks project, electronic reference (2005–)
, , ,[4] Integral transforms and Drinfeld centers in derived algebraic geometry, J. Amer. Math. Soc. 23 (2010) 909 | DOI
, , ,[5] Integral transforms for coherent sheaves, J. Eur. Math. Soc. 19 (2017) 3763 | DOI
, , ,[6] Functorial destackification of tame stacks with abelian stabilisers, Compos. Math. 153 (2017) 1257 | DOI
,[7] Geometricity for derived categories of algebraic stacks, Selecta Math. 22 (2016) 2535 | DOI
, , ,[8] Topological K–theory of complex noncommutative spaces, Compos. Math. 152 (2016) 489 | DOI
,[9] Motivic realizations of singularity categories and vanishing cycles, J. Éc. Polytech. Math. 5 (2018) 651 | DOI
, , , ,[10] Equivariant cyclic homology and equivariant differential forms, Ann. Sci. École Norm. Sup. 27 (1994) 493 | DOI
, ,[11] A universal characterization of higher algebraic K–theory, Geom. Topol. 17 (2013) 733 | DOI
, , ,[12] Étale motives, Compos. Math. 152 (2016) 556 | DOI
, ,[13] Differential graded categories are k–linear stable infinity categories, preprint (2013)
,[14] Curved A∞ algebras and Landau–Ginzburg models, New York J. Math. 19 (2013) 305
, ,[15] Théorie de Hodge, III, Inst. Hautes Études Sci. Publ. Math. 44 (1974) 5 | DOI
,[16] On some finiteness questions for algebraic stacks, Geom. Funct. Anal. 23 (2013) 149 | DOI
, ,[17] Compact generators in categories of matrix factorizations, Duke Math. J. 159 (2011) 223 | DOI
,[18] Cyclic homology of categories of matrix factorizations, Int. Math. Res. Not. 2018 (2018) 3834 | DOI
,[19] Coherent analogues of matrix factorizations and relative singularity categories, Algebra Number Theory 9 (2015) 1159 | DOI
, ,[20] Twisted equivariant K–theory with complex coefficients, J. Topol. 1 (2008) 16 | DOI
, , ,[21] Ind-coherent sheaves, Mosc. Math. J. 13 (2013) 399 | DOI
,[22] A study in derived algebraic geometry, I : Correspondences and duality, 221, Amer. Math. Soc. (2017)
, ,[23] Perfect complexes on algebraic stacks, Compos. Math. 153 (2017) 2318 | DOI
, ,[24] The derived category of a GIT quotient, J. Amer. Math. Soc. 28 (2015) 871 | DOI
,[25] Remarks on Θ–stratifications and derived categories, preprint (2015)
,[26] Mapping stacks and categorical notions of properness, preprint (2014)
, ,[27] Uniform instability in reductive groups, J. Reine Angew. Math. 303-304 (1978) 74 | DOI
,[28] Derived Knörrer periodicity and Orlov’s theorem for gauged Landau–Ginzburg models, Compos. Math. 153 (2017) 973 | DOI
,[29] The special McKay correspondence and exceptional collections, Tohoku Math. J. 67 (2015) 585 | DOI
, ,[30] Equivalence of the derived category of a variety with a singularity category, Int. Math. Res. Not. 2013 (2013) 2787 | DOI
,[31] Non-commutative Hodge-to-de Rham degeneration via the method of Deligne–Illusie, Pure Appl. Math. Q. 4 (2008) 785 | DOI
,[32] Spectral sequences for cyclic homology, from: "Algebra, geometry, and physics in the 21st century" (editors D Auroux, L Katzarkov, T Pantev, Y Soibelman, Y Tschinkel), Progr. Math. 324, Birkhäuser (2017) 99
,[33] Hodge theoretic aspects of mirror symmetry, from: "From Hodge theory to integrability and TQFT –geometry" (editors R Y Donagi, K Wendland), Proc. Sympos. Pure Math. 78, Amer. Math. Soc. (2008) 87 | DOI
, , ,[34] Bogomolov–Tian–Todorov theorems for Landau–Ginzburg models, J. Differential Geom. 105 (2017) 55 | DOI
, , ,[35] On differential graded categories, from: "International Congress of Mathematicians, II" (editors M Sanz-Solé, J Soria, J L Varona, J Verdera), Eur. Math. Soc. (2006) 151
,[36] Cohomology of quotients in symplectic and algebraic geometry, 31, Princeton Univ. Press (1984) | DOI
,[37] Partial desingularisations of quotients of nonsingular varieties and their Betti numbers, Ann. of Math. 122 (1985) 41 | DOI
,[38] Notes on A∞–algebras, A∞–categories and non-commutative geometry, from: "Homological mirror symmetry" (editors A Kapustin, M Kreuzer, K G Schlesinger), Lecture Notes in Phys. 757, Springer (2009) 153 | DOI
, ,[39] On the geometry of Deligne–Mumford stacks, from: "Algebraic geometry, I" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 259 | DOI
,[40] Champs algébriques, 39, Springer (2000) | DOI
, ,[41] Algebraic cobordism, Springer (2007) | DOI
, ,[42] Equivariant stable homotopy theory, 1213, Springer (1986) | DOI
, , ,[43] Global matrix factorizations, Math. Res. Lett. 20 (2013) 91 | DOI
, ,[44] Cyclic homology, 301, Springer (1992) | DOI
,[45] Derived algebraic geometry, VII: Spectral schemes, preprint (2011)
,[46] Higher algebra, preprint (2017)
,[47] Equivariant homotopy and cohomology theory, 91, Amer. Math. Soc. (1996) | DOI
,[48] Rings with several objects, Adv. Math. 8 (1972) 1 | DOI
,[49] A1–homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999) 45 | DOI
, ,[50] A stratification of the null cone via the moment map, Amer. J. Math. 106 (1984) 1281 | DOI
,[51] Homotopy types of topological stacks, Adv. Math. 230 (2012) 2014 | DOI
,[52] Nonabelian Hodge theory in characteristic p, Publ. Math. Inst. Hautes Études Sci. 106 (2007) 1 | DOI
, ,[53] On proper coverings of Artin stacks, Adv. Math. 198 (2005) 93 | DOI
,[54] Matrix factorizations for nonaffine LG–models, Math. Ann. 353 (2012) 95 | DOI
,[55] Thom–Sebastiani and duality for matrix factorizations, preprint (2011)
,[56] Period mapping associated to a primitive form, Publ. Res. Inst. Math. Sci. 19 (1983) 1231 | DOI
,[57] de Rham theory for tame stacks and schemes with linearly reductive singularities, Ann. Inst. Fourier (Grenoble) 62 (2012) 2013 | DOI
,[58] The closed state space of affine Landau–Ginzburg B–models, J. Noncommut. Geom. 7 (2013) 857 | DOI
,[59] Equivariant K–theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968) 129 | DOI
,[60] Non-commutative Hodge structures : towards matching categorical and geometric examples, Trans. Amer. Math. Soc. 366 (2014) 2923 | DOI
,[61] Mixed Hodge structure on the vanishing cohomology, from: "Real and complex singularities" (editor P Holm), Sijthoff Noordhoff (1977) 525
,[62] Higher K–theory via universal invariants, Duke Math. J. 145 (2008) 121 | DOI
,[63] The quantization conjecture revisited, Ann. of Math. 152 (2000) 1 | DOI
,[64] Riemann–Roch for algebraic versus topological K–theory, J. Pure Appl. Algebra 27 (1983) 87 | DOI
,[65] Algebraic K–theory of group scheme actions, from: "Algebraic topology and algebraic –theory" (editor W Browder), Ann. of Math. Stud. 113, Princeton Univ. Press (1987) 539 | DOI
,[66] Equivariant algebraic vs. topological K–homology Atiyah–Segal-style, Duke Math. J. 56 (1988) 589 | DOI
,[67] Théorèmes de Riemann–Roch pour les champs de Deligne–Mumford, –Theory 18 (1999) 33 | DOI
,Cité par Sources :