Asymmetric L–space knots
Geometry & topology, Tome 24 (2020) no. 5, pp. 2287-2359.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct the first examples of asymmetric L–space knots in S3. More specifically, we exhibit a construction of hyperbolic knots in S3 with both (i) a surgery that may be realized as a surgery on a strongly invertible link such that the result of the surgery is the double branched cover of an alternating link and (ii) trivial isometry group. In particular, this produces L–space knots in S3 which are not strongly invertible. The construction also immediately extends to produce asymmetric L–space knots in any lens space, including S1 × S2.

DOI : 10.2140/gt.2020.24.2287
Classification : 57M25, 57M27, 57M12, 57R58
Keywords: L–space, L–space knot, asymmetric knot, alternating knot, alternating link, alternating surgery, branched double cover, Dehn surgery, lashings

Baker, Kenneth L 1 ; Luecke, John 2

1 Department of Mathematics, University of Miami, Coral Gables, FL, United States
2 Department of Mathematics, The University of Texas at Austin, Austin, TX, United States
@article{GT_2020_24_5_a1,
     author = {Baker, Kenneth L and Luecke, John},
     title = {Asymmetric {L{\textendash}space} knots},
     journal = {Geometry & topology},
     pages = {2287--2359},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2020},
     doi = {10.2140/gt.2020.24.2287},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2287/}
}
TY  - JOUR
AU  - Baker, Kenneth L
AU  - Luecke, John
TI  - Asymmetric L–space knots
JO  - Geometry & topology
PY  - 2020
SP  - 2287
EP  - 2359
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2287/
DO  - 10.2140/gt.2020.24.2287
ID  - GT_2020_24_5_a1
ER  - 
%0 Journal Article
%A Baker, Kenneth L
%A Luecke, John
%T Asymmetric L–space knots
%J Geometry & topology
%D 2020
%P 2287-2359
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2287/
%R 10.2140/gt.2020.24.2287
%F GT_2020_24_5_a1
Baker, Kenneth L; Luecke, John. Asymmetric L–space knots. Geometry & topology, Tome 24 (2020) no. 5, pp. 2287-2359. doi : 10.2140/gt.2020.24.2287. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2287/

[1] K L Baker, Surgery descriptions and volumes of Berge knots, I : Large volume Berge knots, J. Knot Theory Ramifications 17 (2008) 1077 | DOI

[2] K L Baker, R S Bowman, J Luecke, Boundary-reducing surgeries and bridge number, Comm. Anal. Geom. 27 (2019) 1417 | DOI

[3] K L Baker, C Gordon, J Luecke, Obtaining genus 2 Heegaard splittings from Dehn surgery, Algebr. Geom. Topol. 13 (2013) 2471 | DOI

[4] K L Baker, C Gordon, J Luecke, Bridge number and integral Dehn surgery, Algebr. Geom. Topol. 16 (2016) 1 | DOI

[5] K L Baker, A H Moore, Montesinos knots, Hopf plumbings, and L–space surgeries, J. Math. Soc. Japan 70 (2018) 95 | DOI

[6] R Benedetti, C Petronio, Lectures on hyperbolic geometry, Springer (1992) | DOI

[7] M Boileau, F González-Acuña, J M Montesinos, Surgery on double knots and symmetries, Math. Ann. 276 (1987) 323 | DOI

[8] F Bonahon, Geometric structures on 3–manifolds, from: "Handbook of geometric topology" (editors R J Daverman, R B Sher), North-Holland (2002) 93 | DOI

[9] R S Bowman, Knots in handlebodies with nontrivial handlebody surgeries, J. Topol. 6 (2013) 955 | DOI

[10] S Boyer, X Zhang, Finite Dehn surgery on knots, J. Amer. Math. Soc. 9 (1996) 1005 | DOI

[11] B A Burton, R Budney, W Pettersson, Others, Regina: software for low-dimensional topology, (1999–2016)

[12] P J Callahan, Symmetric surgery on asymmetric knots, Math. Ann. 308 (1997) 1 | DOI

[13] A J Casson, S A Bleiler, Automorphisms of surfaces after Nielsen and Thurston, 9, Cambridge Univ. Press (1988) | DOI

[14] J H Conway, An enumeration of knots and links, and some of their algebraic properties, from: "Computational problems in abstract algebra" (editor J Leech), Pergamon (1970) 329 | DOI

[15] R Crowell, Genus of alternating link types, Ann. of Math. 69 (1959) 258 | DOI

[16] M Culler, N Dunfield, M Goerner, J Weeks, SnapPy : a computer program for studying the geometry and topology of 3–manifolds, (2016)

[17] M Culler, C M Gordon, J Luecke, P B Shalen, Dehn surgery on knots, Ann. of Math. 125 (1987) 237 | DOI

[18] N M Dunfield, N R Hoffman, J E Licata, Asymmetric hyperbolic L–spaces, Heegaard genus, and Dehn filling, Math. Res. Lett. 22 (2015) 1679 | DOI

[19] M J Dunwoody, An equivariant sphere theorem, Bull. London Math. Soc. 17 (1985) 437 | DOI

[20] C M Gordon, On primitive sets of loops in the boundary of a handlebody, Topology Appl. 27 (1987) 285 | DOI

[21] C D Hodgson, J R Weeks, Symmetries, isometries and length spectra of closed hyperbolic three-manifolds, Experiment. Math. 3 (1994) 261 | DOI

[22] W H Holzmann, An equivariant torus theorem for involutions, Trans. Amer. Math. Soc. 326 (1991) 887 | DOI

[23] J Hom, Problem 12 of problem session of AMS Spring Eastern Sectional Meeting (2014)

[24] L H Kauffman, State models and the Jones polynomial, Topology 26 (1987) 395 | DOI

[25] R Kirby, P Melvin, Dedekind sums, μ–invariants and the signature cocycle, Math. Ann. 299 (1994) 231 | DOI

[26] T Lidman, A H Moore, Pretzel knots with L–space surgeries, Michigan Math. J. 65 (2016) 105 | DOI

[27] D Mccoy, Bounds on alternating surgery slopes, Algebr. Geom. Topol. 17 (2017) 2603 | DOI

[28] W Meeks Iii, L Simon, S T Yau, Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, Ann. of Math. 116 (1982) 621 | DOI

[29] W Menasco, Closed incompressible surfaces in alternating knot and link complements, Topology 23 (1984) 37 | DOI

[30] K Motegi, L–space surgery and twisting operation, Algebr. Geom. Topol. 16 (2016) 1727 | DOI

[31] W D Neumann, D Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (1985) 307 | DOI

[32] Y Ni, F Vafaee, Null surgery on knots in L–spaces, Trans. Amer. Math. Soc. 372 (2019) 8279 | DOI

[33] U Oertel, Automorphisms of three-dimensional handlebodies, Topology 41 (2002) 363 | DOI

[34] P Ozsváth, Z Szabó, On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281 | DOI

[35] P Ozsváth, Z Szabó, On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005) 1 | DOI

[36] J Rasmussen, S D Rasmussen, Floer simple manifolds and L–space intervals, Adv. Math. 322 (2017) 738 | DOI

[37] T S Developers, SageMath : the Sage mathematics software system, version 7.14 (2017)

[38] N Saveliev, Invariants for homology 3–spheres, 140, Springer (2002) | DOI

[39] K Shimokawa, Parallelism of two strings in alternating tangles, J. Knot Theory Ramifications 7 (1998) 489 | DOI

[40] K Shimokawa, Hyperbolicity and ∂–irreducibility of alternating tangles, Topology Appl. 96 (1999) 217 | DOI

[41] M B Thistlethwaite, On the algebraic part of an alternating link, Pacific J. Math. 151 (1991) 317 | DOI

[42] W P Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982) 357 | DOI

[43] J L Tollefson, Involutions of Seifert fiber spaces, Pacific J. Math. 74 (1978) 519 | DOI

[44] L Watson, A surgical perspective on quasi-alternating links, from: "Low-dimensional and symplectic topology" (editor M Usher), Proc. Sympos. Pure Math. 82, Amer. Math. Soc. (2011) 39 | DOI

[45] L Watson, Khovanov homology and the symmetry group of a knot, Adv. Math. 313 (2017) 915 | DOI

Cité par Sources :