Augmentations are sheaves
Geometry & topology, Tome 24 (2020) no. 5, pp. 2149-2286.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the set of augmentations of the Chekanov–Eliashberg algebra of a Legendrian link underlies the structure of a unital A–category. This differs from the nonunital category constructed by Bourgeois and Chantraine (J. Symplectic Geom. 12 (2014) 553–583), but is related to it in the same way that cohomology is related to compactly supported cohomology. The existence of such a category was predicted by Shende, Treumann and Zaslow  (Invent. Math. 207 (2017) 1031–1133), who moreover conjectured its equivalence to a category of sheaves on the front plane with singular support meeting infinity in the knot. After showing that the augmentation category forms a sheaf over the x–line, we are able to prove this conjecture by calculating both categories on thin slices of the front plane. In particular, we conclude that every augmentation comes from geometry.

DOI : 10.2140/gt.2020.24.2149
Classification : 53D42, 53D37
Keywords: Legendrian knots, Legendrian contact homology, augmentations, constructible sheaves

Ng, Lenhard 1 ; Rutherford, Dan 2 ; Shende, Vivek 3 ; Sivek, Steven 4 ; Zaslow, Eric 5

1 Department of Mathematics, Duke University, Durham, NC, United States
2 Department of Mathematical Sciences, Ball State University, Muncie, IN, United States
3 Department of Mathematics, University of California, Berkeley, Berkeley, CA, United States
4 Department of Mathematics, Imperial College London, London, United Kingdom
5 Department of Mathematics, Northwestern University, Evanston, IL, United States
@article{GT_2020_24_5_a0,
     author = {Ng, Lenhard and Rutherford, Dan and Shende, Vivek and Sivek, Steven and Zaslow, Eric},
     title = {Augmentations are sheaves},
     journal = {Geometry & topology},
     pages = {2149--2286},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2020},
     doi = {10.2140/gt.2020.24.2149},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2149/}
}
TY  - JOUR
AU  - Ng, Lenhard
AU  - Rutherford, Dan
AU  - Shende, Vivek
AU  - Sivek, Steven
AU  - Zaslow, Eric
TI  - Augmentations are sheaves
JO  - Geometry & topology
PY  - 2020
SP  - 2149
EP  - 2286
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2149/
DO  - 10.2140/gt.2020.24.2149
ID  - GT_2020_24_5_a0
ER  - 
%0 Journal Article
%A Ng, Lenhard
%A Rutherford, Dan
%A Shende, Vivek
%A Sivek, Steven
%A Zaslow, Eric
%T Augmentations are sheaves
%J Geometry & topology
%D 2020
%P 2149-2286
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2149/
%R 10.2140/gt.2020.24.2149
%F GT_2020_24_5_a0
Ng, Lenhard; Rutherford, Dan; Shende, Vivek; Sivek, Steven; Zaslow, Eric. Augmentations are sheaves. Geometry & topology, Tome 24 (2020) no. 5, pp. 2149-2286. doi : 10.2140/gt.2020.24.2149. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2149/

[1] F Bourgeois, A survey of contact homology, from: "New perspectives and challenges in symplectic field theory" (editors M Abreu, F Lalonde, L Polterovich), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 45

[2] F Bourgeois, B Chantraine, Bilinearized Legendrian contact homology and the augmentation category, J. Symplectic Geom. 12 (2014) 553 | DOI

[3] F Bourgeois, T Ekholm, Y Eliashberg, Effect of Legendrian surgery, Geom. Topol. 16 (2012) 301 | DOI

[4] B Chantraine, A note on exact Lagrangian cobordisms with disconnected Legendrian ends, Proc. Amer. Math. Soc. 143 (2015) 1325 | DOI

[5] Y Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441 | DOI

[6] W Chongchitmate, L Ng, An atlas of Legendrian knots, Exp. Math. 22 (2013) 26 | DOI

[7] G Civan, P Koprowski, J Etnyre, J M Sabloff, A Walker, Product structures for Legendrian contact homology, Math. Proc. Cambridge Philos. Soc. 150 (2011) 291 | DOI

[8] G Dimitroglou Rizell, Lifting pseudo-holomorphic polygons to the symplectisation of P × R and applications, Quantum Topol. 7 (2016) 29 | DOI

[9] V Drinfeld, DG quotients of DG categories, J. Algebra 272 (2004) 643 | DOI

[10] T Ekholm, Rational SFT, linearized Legendrian contact homology, and Lagrangian Floer cohomology, from: "Perspectives in analysis, geometry, and topology" (editors I Itenberg, B Jöricke, M Passare), Progr. Math. 296, Birkhäuser (2012) 109 | DOI

[11] T Ekholm, J B Etnyre, L Ng, M G Sullivan, Knot contact homology, Geom. Topol. 17 (2013) 975 | DOI

[12] T Ekholm, J B Etnyre, J M Sabloff, A duality exact sequence for Legendrian contact homology, Duke Math. J. 150 (2009) 1 | DOI

[13] T Ekholm, J Etnyre, M Sullivan, Non-isotopic Legendrian submanifolds in R2n+1, J. Differential Geom. 71 (2005) 85 | DOI

[14] T Ekholm, J Etnyre, M Sullivan, Orientations in Legendrian contact homology and exact Lagrangian immersions, Int. J. Math. 16 (2005) 453 | DOI

[15] T Ekholm, K Honda, T Kálmán, Legendrian knots and exact Lagrangian cobordisms, J. Eur. Math. Soc. 18 (2016) 2627 | DOI

[16] T Ekholm, Y Lekili, Duality between Lagrangian and Legendrian invariants, preprint (2017)

[17] T Ekholm, L Ng, Legendrian contact homology in the boundary of a subcritical Weinstein 4–manifold, J. Differential Geom. 101 (2015) 67 | DOI

[18] Y Eliashberg, Invariants in contact topology, from: "Proceedings of the International Congress of Mathematicians, II" (editors G Fischer, U Rehmann), Deutsche Mathematiker Vereinigung (1998) 327

[19] Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560 | DOI

[20] J B Etnyre, L L Ng, J M Sabloff, Invariants of Legendrian knots and coherent orientations, J. Symplectic Geom. 1 (2002) 321

[21] Y Félix, S Halperin, J C Thomas, Rational homotopy theory, 205, Springer (2001) | DOI

[22] P Gabriel, Unzerlegbare Darstellungen, I, Manuscripta Math. 6 (1972) 71 | DOI

[23] E Getzler, J D S Jones, A∞–algebras and the cyclic bar complex, Illinois J. Math. 34 (1990) 256 | DOI

[24] S Guillermou, Sheaves and symplectic geometry of cotangent bundles, preprint (2019)

[25] S Guillermou, M Kashiwara, P Schapira, Sheaf quantization of Hamiltonian isotopies and applications to nondisplaceability problems, Duke Math. J. 161 (2012) 201 | DOI

[26] M B Henry, Connections between Floer-type invariants and Morse-type invariants of Legendrian knots, Pacific J. Math. 249 (2011) 77 | DOI

[27] M B Henry, D Rutherford, Equivalence classes of augmentations and Morse complex sequences of Legendrian knots, Algebr. Geom. Topol. 15 (2015) 3323 | DOI

[28] X Jin, D Treumann, Brane structures in microlocal sheaf theory, preprint (2017)

[29] T V Kadeishvili, The category of differential coalgebras and the category of A(∞)–algebras, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 77 (1985) 50

[30] T Kálmán, Contact homology and one parameter families of Legendrian knots, Geom. Topol. 9 (2005) 2013 | DOI

[31] T Kálmán, Braid-positive Legendrian links, Int. Math. Res. Not. 2006 (2006) | DOI

[32] C Karlsson, A note on coherent orientations for exact Lagrangian cobordisms, Quantum Topol. 11 (2020) 1 | DOI

[33] M Kashiwara, The Riemann–Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci. 20 (1984) 319 | DOI

[34] M Kashiwara, P Schapira, Sheaves on manifolds, 292, Springer (1990) | DOI

[35] B Keller, Introduction to A–infinity algebras and modules, Homology Homotopy Appl. 3 (2001) 1 | DOI

[36] C Leverson, Augmentations and rulings of Legendrian knots, J. Symplectic Geom. 14 (2016) 1089 | DOI

[37] J Lurie, Derived algebraic geometry, V: Structured spaces, preprint (2009)

[38] J Lurie, Higher topos theory, 170, Princeton Univ. Press (2009) | DOI

[39] J Lurie, Rotation invariance in algebraic K–theory, preprint (2015)

[40] J Lurie, Higher algebra, preprint (2017)

[41] P Melvin, S Shrestha, The nonuniqueness of Chekanov polynomials of Legendrian knots, Geom. Topol. 9 (2005) 1221 | DOI

[42] K Mishachev, The N–copy of a topologically trivial Legendrian knot, J. Symplectic Geom. 1 (2003) 659

[43] D Nadler, Microlocal branes are constructible sheaves, Selecta Math. 15 (2009) 563 | DOI

[44] D Nadler, E Zaslow, Constructible sheaves and the Fukaya category, J. Amer. Math. Soc. 22 (2009) 233 | DOI

[45] L L Ng, Computable Legendrian invariants, Topology 42 (2003) 55 | DOI

[46] L Ng, Rational symplectic field theory for Legendrian knots, Invent. Math. 182 (2010) 451 | DOI

[47] L Ng, D Rutherford, Satellites of Legendrian knots and representations of the Chekanov–Eliashberg algebra, Algebr. Geom. Topol. 13 (2013) 3047 | DOI

[48] L Ng, D Rutherford, V Shende, S Sivek, The cardinality of the augmentation category of a Legendrian link, Math. Res. Lett. 24 (2017) 1845 | DOI

[49] J M Sabloff, Augmentations and rulings of Legendrian knots, Int. Math. Res. Not. 2005 (2005) 1157 | DOI

[50] J M Sabloff, Duality for Legendrian contact homology, Geom. Topol. 10 (2006) 2351 | DOI

[51] P Seidel, Fukaya categories and Picard–Lefschetz theory, Eur. Math. Soc. (2008) | DOI

[52] V Shende, D Treumann, E Zaslow, Legendrian knots and constructible sheaves, Invent. Math. 207 (2017) 1031 | DOI

[53] A D Shepard, A cellular description of the derived category of a stratified space, PhD thesis, Brown University (1985)

[54] S Sivek, A bordered Chekanov–Eliashberg algebra, J. Topol. 4 (2011) 73 | DOI

[55] J D Stasheff, Homotopy associativity of H–spaces, II, Trans. Amer. Math. Soc. 108 (1963) 293 | DOI

[56] G Tabuada, Une structure de catégorie de modèles de Quillen sur la catégorie des dg–catégories, C. R. Math. Acad. Sci. Paris 340 (2005) 15 | DOI

[57] B Toën, The homotopy theory of dg–categories and derived Morita theory, Invent. Math. 167 (2007) 615 | DOI

Cité par Sources :