New differential operator and noncollapsed RCD spaces
Geometry & topology, Tome 24 (2020) no. 4, pp. 2127-2148.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show characterizations of noncollapsed compact RCD(K,N) spaces, which in particular confirm a conjecture of De Philippis and Gigli on the implication from the weakly noncollapsed condition to the noncollapsed one in the compact case. The key idea is to give the explicit formula of the Laplacian associated to the pullback Riemannian metric by embedding in L2 via the heat kernel. This seems to be the first application of geometric flow to the study of RCD spaces.

DOI : 10.2140/gt.2020.24.2127
Classification : 53C21
Keywords: Ricci curvature, Laplacian, metric measure space

Honda, Shouhei 1

1 Mathematical Institute, Tohoku University, Sendai, Japan
@article{GT_2020_24_4_a10,
     author = {Honda, Shouhei},
     title = {New differential operator and noncollapsed {RCD} spaces},
     journal = {Geometry & topology},
     pages = {2127--2148},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2020},
     doi = {10.2140/gt.2020.24.2127},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2127/}
}
TY  - JOUR
AU  - Honda, Shouhei
TI  - New differential operator and noncollapsed RCD spaces
JO  - Geometry & topology
PY  - 2020
SP  - 2127
EP  - 2148
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2127/
DO  - 10.2140/gt.2020.24.2127
ID  - GT_2020_24_4_a10
ER  - 
%0 Journal Article
%A Honda, Shouhei
%T New differential operator and noncollapsed RCD spaces
%J Geometry & topology
%D 2020
%P 2127-2148
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2127/
%R 10.2140/gt.2020.24.2127
%F GT_2020_24_4_a10
Honda, Shouhei. New differential operator and noncollapsed RCD spaces. Geometry & topology, Tome 24 (2020) no. 4, pp. 2127-2148. doi : 10.2140/gt.2020.24.2127. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2127/

[1] L Ambrosio, M Colombo, S Di Marino, Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope, from: "Variational methods for evolving objects" (editors L Ambrosio, Y Giga, P Rybka, Y Tonegawa), Adv. Stud. Pure Math. 67, Math. Soc. Japan (2015) 1 | DOI

[2] L Ambrosio, N Gigli, G Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math. 195 (2014) 289 | DOI

[3] L Ambrosio, N Gigli, G Savaré, Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J. 163 (2014) 1405 | DOI

[4] L Ambrosio, S Honda, New stability results for sequences of metric measure spaces with uniform Ricci bounds from below, from: "Measure theory in non-smooth spaces" (editor N Gigli), de Gruyter (2017) 1 | DOI

[5] L Ambrosio, S Honda, J W Portegies, D Tewodrose, Embedding of RCD∗(K,N) spaces in L2 via eigenfunctions, preprint (2018)

[6] L Ambrosio, S Honda, D Tewodrose, Short-time behavior of the heat kernel and Weyl’s law on RCD∗(K,N) spaces, Ann. Global Anal. Geom. 53 (2018) 97 | DOI

[7] L Ambrosio, A Mondino, G Savaré, Nonlinear diffusion equations and curvature conditions in metric measure spaces, 1270, Amer. Math. Soc. (2019) | DOI

[8] R H Bamler, B Kleiner, Uniqueness and stability of Ricci flow through singularities, preprint (2017)

[9] P Bérard, G Besson, S Gallot, Embedding Riemannian manifolds by their heat kernel, Geom. Funct. Anal. 4 (1994) 373 | DOI

[10] E Brué, D Semola, Constancy of the dimension for RCD(K,N) spaces via regularity of Lagrangian flows, Comm. Pure Appl. Math. 73 (2020) 1141 | DOI

[11] F Cavalletti, E Milman, The globalization theorem for the curvature dimension condition, preprint (2016)

[12] J Cheeger, T H Colding, On the structure of spaces with Ricci curvature bounded below, I, J. Differential Geom. 46 (1997) 406 | DOI

[13] J Cheeger, T H Colding, On the structure of spaces with Ricci curvature bounded below, II, J. Differential Geom. 54 (2000) 13 | DOI

[14] J Cheeger, T H Colding, On the structure of spaces with Ricci curvature bounded below, III, J. Differential Geom. 54 (2000) 37 | DOI

[15] T H Colding, A Naber, Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications, Ann. of Math. 176 (2012) 1173 | DOI

[16] G De Philippis, N Gigli, Non-collapsed spaces with Ricci curvature bounded from below, J. Éc. polytech. Math. 5 (2018) 613 | DOI

[17] G De Philippis, A Marchese, F Rindler, On a conjecture of Cheeger, from: "Measure theory in non-smooth spaces" (editor N Gigli), de Gruyter (2017) 145

[18] M Erbar, K Kuwada, K T Sturm, On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math. 201 (2015) 993 | DOI

[19] N Garofalo, A Mondino, Li–Yau and Harnack type inequalities in RCD∗(K,N) metric measure spaces, Nonlinear Anal. 95 (2014) 721 | DOI

[20] N Gigli, The splitting theorem in non-smooth context, preprint (2013)

[21] N Gigli, On the differential structure of metric measure spaces and applications, 1113, Amer. Math. Soc. (2015) | DOI

[22] N Gigli, Nonsmooth differential geometry : an approach tailored for spaces with Ricci curvature bounded from below, 1196, Amer. Math. Soc. (2018) | DOI

[23] N Gigli, C Mantegazza, A flow tangent to the Ricci flow via heat kernels and mass transport, Adv. Math. 250 (2014) 74 | DOI

[24] N Gigli, A Mondino, T Rajala, Euclidean spaces as weak tangents of infinitesimally Hilbertian metric measure spaces with Ricci curvature bounded below, J. Reine Angew. Math. 705 (2015) 233 | DOI

[25] N Gigli, E Pasqualetto, Behaviour of the reference measure on RCD spaces under charts, preprint (2016)

[26] P Hajłasz, P Koskela, Sobolev met Poincaré, 688, Amer. Math. Soc. (2000) | DOI

[27] B X Han, Ricci tensor on RCD∗(K,N) spaces, J. Geom. Anal. 28 (2018) 1295 | DOI

[28] B X Han, Conformal transformation on metric measure spaces, Potential Anal. 51 (2019) 127 | DOI

[29] B X Han, Measure rigidity of synthetic lower Ricci curvature bound on Riemannian manifolds, preprint (2019)

[30] S Honda, Bakry-Émery conditions on almost smooth metric measure spaces, Anal. Geom. Metr. Spaces 6 (2018) 129 | DOI

[31] S Honda, I Mondello, Sphere theorems for RCD and stratified spaces, preprint (2019)

[32] R Jiang, The Li–Yau inequality and heat kernels on metric measure spaces, J. Math. Pures Appl. 104 (2015) 29 | DOI

[33] R Jiang, H Li, H Zhang, Heat kernel bounds on metric measure spaces and some applications, Potential Anal. 44 (2016) 601 | DOI

[34] V Kapovitch, C Ketterer, Weakly noncollapsed RCD spaces with upper curvature bounds, Anal. Geom. Metr. Spaces 7 (2019) 197 | DOI

[35] V Kapovitch, A Mondino, On the topology and the boundary of N–dimensional RCD(K,N) spaces, preprint (2019)

[36] M Kell, A Mondino, On the volume measure of non-smooth spaces with Ricci curvature bounded below, Ann. Sc. Norm. Super. Pisa Cl. Sci. 18 (2018) 593 | DOI

[37] Y Kitabeppu, A Bishop-type inequality on metric measure spaces with Ricci curvature bounded below, Proc. Amer. Math. Soc. 145 (2017) 3137 | DOI

[38] B Kleiner, J Lott, Singular Ricci flows, I, Acta Math. 219 (2017) 65 | DOI

[39] B Kleiner, J Lott, Singular Ricci flows, II, from: "Geometric analysis" (editors J Chen, P Lu, Z Lu, Z Zhang), Progr. Math. 333, Birkhäuser (2020) 137 | DOI

[40] J Lott, C Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. 169 (2009) 903 | DOI

[41] A Mondino, A Naber, Structure theory of metric measure spaces with lower Ricci curvature bounds, J. Eur. Math. Soc. 21 (2019) 1809 | DOI

[42] T Rajala, Local Poincaré inequalities from stable curvature conditions on metric spaces, Calc. Var. Partial Differential Equations 44 (2012) 477 | DOI

[43] M K Von Renesse, On local Poincaré via transportation, Math. Z. 259 (2008) 21 | DOI

[44] K T Sturm, Analysis on local Dirichlet spaces, II : Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math. 32 (1995) 275

[45] K T Sturm, Analysis on local Dirichlet spaces, III : The parabolic Harnack inequality, J. Math. Pures Appl. 75 (1996) 273

[46] K T Sturm, On the geometry of metric measure spaces, I, Acta Math. 196 (2006) 65 | DOI

[47] K T Sturm, On the geometry of metric measure spaces, II, Acta Math. 196 (2006) 133 | DOI

[48] C Villani, Optimal transport: old and new, 338, Springer (2009) | DOI

[49] N Weaver, Lipschitz algebras and derivations, II : Exterior differentiation, J. Funct. Anal. 178 (2000) 64 | DOI

Cité par Sources :