Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
This paper explores the conjecture that the following are equivalent for irreducible rational homology –spheres: having left-orderable fundamental group, having nonminimal Heegaard Floer homology, and admitting a coorientable taut foliation. In particular, it adds further evidence in favor of this conjecture by studying these three properties for more than hyperbolic rational homology –spheres. New or much improved methods for studying each of these properties form the bulk of the paper, including a new combinatorial criterion, called a foliar orientation, for showing that a –manifold has a taut foliation.
Dunfield, Nathan M 1
@article{GT_2020_24_4_a9, author = {Dunfield, Nathan M}, title = {Floer homology, group orderability, and taut foliations of hyperbolic 3{\textendash}manifolds}, journal = {Geometry & topology}, pages = {2075--2125}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2020}, doi = {10.2140/gt.2020.24.2075}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2075/} }
TY - JOUR AU - Dunfield, Nathan M TI - Floer homology, group orderability, and taut foliations of hyperbolic 3–manifolds JO - Geometry & topology PY - 2020 SP - 2075 EP - 2125 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2075/ DO - 10.2140/gt.2020.24.2075 ID - GT_2020_24_4_a9 ER -
%0 Journal Article %A Dunfield, Nathan M %T Floer homology, group orderability, and taut foliations of hyperbolic 3–manifolds %J Geometry & topology %D 2020 %P 2075-2125 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2075/ %R 10.2140/gt.2020.24.2075 %F GT_2020_24_4_a9
Dunfield, Nathan M. Floer homology, group orderability, and taut foliations of hyperbolic 3–manifolds. Geometry & topology, Tome 24 (2020) no. 4, pp. 2075-2125. doi : 10.2140/gt.2020.24.2075. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2075/
[1] Virtual properties of 3–manifolds, from: "Proceedings of the International Congress of Mathematicians, I" (editors S Y Jang, Y R Kim, D W Lee, I Ye), Kyung Moon Sa (2014) 141
,[2] An algorithm to detect laminar 3–manifolds, Geom. Topol. 7 (2003) 287 | DOI
, ,[3] Montesinos knots, Hopf plumbings, and L–space surgeries, J. Math. Soc. Japan 70 (2018) 95 | DOI
, ,[4] The Magma algebra system, I : The user language, J. Symbolic Comput. 24 (1997) 235 | DOI
, , ,[5] Approximating C0–foliations by contact structures, Geom. Funct. Anal. 26 (2016) 1255 | DOI
,[6] Foliations, orders, representations, L–spaces and graph manifolds, Adv. Math. 310 (2017) 159 | DOI
, ,[7] On L–spaces and left-orderable fundamental groups, Math. Ann. 356 (2013) 1213 | DOI
, , ,[8] Taut foliations in branched cyclic covers and left-orderable groups, Trans. Amer. Math. Soc. 372 (2019) 7921 | DOI
, ,[9] Orderable 3–manifold groups, Ann. Inst. Fourier (Grenoble) 55 (2005) 243 | DOI
, , ,[10] Persistent laminations from Seifert surfaces, J. Knot Theory Ramifications 10 (2001) 1155 | DOI
,[11] Families of automorphic forms, 88, Birkhäuser (1994) | DOI
,[12] The cusped hyperbolic census is complete, preprint (2014)
,[13] Regina: software for low-dimensional topology (1999)
, , , ,[14] Foliations transverse to triangulations of 3–manifolds, Comm. Anal. Geom. 8 (2000) 133 | DOI
,[15] Foliations and the geometry of 3–manifolds, Oxford Univ. Press (2007)
,[16] Laminations and groups of homeomorphisms of the circle, Invent. Math. 152 (2003) 149 | DOI
, ,[17] Foliations, II, 60, Amer. Math. Soc. (2003) | DOI
, ,[18] Ordered groups and topology, 176, Amer. Math. Soc. (2016)
, ,[19] Orderability and Dehn filling, Geom. Topol. 22 (2018) 1405 | DOI
, ,[20] SnapPy, a computer program for studying the topology of 3–manifolds
, , ,[21] Essential laminations and Dehn surgery on 2–bridge knots, Topology Appl. 63 (1995) 201 | DOI
,[22] Alternating knots and Montesinos knots satisfy the L–space knot conjecture, video lecture presented by Delman (2017)
, ,[23] A census of exceptional Dehn fillings, (2018)
,[24]
, code and data to accompany this paper (2019)[25] Incompressibility criteria for spun-normal surfaces, Trans. Amer. Math. Soc. 364 (2012) 6109 | DOI
, ,[26] Asymmetric hyperbolic L–spaces, Heegaard genus, and Dehn filling, Math. Res. Lett. 22 (2015) 1679 | DOI
, , ,[27] Word processing in groups, Jones Bartlett (1992) | DOI
, , , , , ,[28] The Achilles’ heel of O(3,1) ?, Experiment. Math. 11 (2002) 91 | DOI
, , ,[29] Combinatorial volume preserving flows and taut foliations, Comment. Math. Helv. 75 (2000) 109 | DOI
,[30] Pseudo-Anosov maps and surgery on fibred 2–bridge knots, Topology Appl. 37 (1990) 93 | DOI
, ,[31] Non-L–space integral homology 3–spheres with no nice orderings, Algebr. Geom. Topol. 17 (2017) 2511 | DOI
,[32] Profinite rigidity in the SnapPea census, Experiment. Math. (2019) | DOI
,[33] Gluing equations for PGL(n, C)–representations of 3–manifolds, Algebr. Geom. Topol. 15 (2015) 565 | DOI
, , ,[34] The Ptolemy field of 3–manifold representations, Algebr. Geom. Topol. 15 (2015) 371 | DOI
, , ,[35] The complex volume of SL(n, C)–representations of 3–manifolds, Duke Math. J. 164 (2015) 2099 | DOI
, , ,[36] Groups acting on the circle, Enseign. Math. 47 (2001) 329 | DOI
,[37] Ptolemy data for SnapPy manifolds
,[38] Triangulation independent Ptolemy varieties, Math. Z. 289 (2018) 663 | DOI
, ,[39] Taut foliations, left-orderability, and cyclic branched covers, Acta Math. Vietnam. 39 (2014) 599 | DOI
, ,[40] Bordered Heegaard Floer homology and graph manifolds, Algebr. Geom. Topol. 16 (2016) 3103 | DOI
,[41] HFhat_graph_manifolds (2016)
,[42] L–spaces, taut foliations, and graph manifolds, Compos. Math. 156 (2020) 604 | DOI
, , , ,[43] Algebraic topology, Cambridge Univ. Press (2002)
,[44] On knot Floer homology and cabling, II, Int. Math. Res. Not. 2009 (2009) 2248 | DOI
,[45] Pre-taut sutured manifolds and essential laminations, Osaka J. Math. 38 (2001) 905
, ,[46] Symmetries, isometries and length spectra of closed hyperbolic three-manifolds, Experiment. Math. 3 (1994) 261 | DOI
, ,[47] Verified computations for hyperbolic 3–manifolds, Experiment. Math. 25 (2016) 66 | DOI
, , , , , ,[48] The big Dehn surgery graph and the link of S3, Proc. Amer. Math. Soc. Ser. B 2 (2015) 17 | DOI
, ,[49] Handbook of computational group theory, Chapman Hall (2005) | DOI
, , ,[50] The first 1,701,936 knots, Math. Intelligencer 20 (1998) 33 | DOI
, , ,[51] Arb: efficient arbitrary-precision midpoint-radius interval arithmetic, IEEE Trans. Comput. 66 (2017) 1281 | DOI
,[52] A survey of Heegaard Floer homology, from: "New ideas in low dimensional topology" (editors L H Kauffman, V O Manturov), Ser. Knots Everything 56, World Sci. (2015) 237 | DOI
,[53] C0 approximations of foliations, Geom. Topol. 21 (2017) 3601 | DOI
, ,[54] Monopoles and lens space surgeries, Ann. of Math. 165 (2007) 457 | DOI
, , , ,[55] Laminar branched surfaces in 3–manifolds, Geom. Topol. 6 (2002) 153 | DOI
,[56] Bordered Heegaard Floer homology: invariance and pairing, preprint (2008)
, , ,[57] Tour of bordered Floer theory, Proc. Natl. Acad. Sci. USA 108 (2011) 8085 | DOI
, , ,[58] Hyperbolic manifolds and Kleinian groups, Oxford Univ. Press (1998)
, ,[59] Introduction to interval analysis, SIAM (2009) | DOI
, , ,[60] Constructing essential laminations in 2–bridge knot surgered 3–manifolds, Pacific J. Math. 180 (1997) 153 | DOI
,[61] A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981) 299 | DOI
,[62] Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311 | DOI
, ,[63] On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281 | DOI
, ,[64] Floer simple manifolds and L–space intervals, Adv. Math. 322 (2017) 738 | DOI
, ,[65] L–space intervals for graph manifolds and cables, Compos. Math. 153 (2017) 1008 | DOI
,[66] A personal account of the discovery of hyperbolic structures on some knot complements, Expo. Math. 31 (2013) 104 | DOI
,[67] Verification methods: rigorous results using floating-point arithmetic, Acta Numer. 19 (2010) 287 | DOI
,[68] An algorithm for computing some Heegaard Floer homologies, Ann. of Math. 171 (2010) 1213 | DOI
, ,[69] A generalisation of the deformation variety, Algebr. Geom. Topol. 12 (2012) 2179 | DOI
,[70] Introduction to numerical algebraic geometry, from: "Solving polynomial equations" (editors A Dickenstein, I Z Emiris), Algorithms Comput. Math. 14, Springer (2005) 301 | DOI
, , ,[71] CryptoMiniSat, an advanced SAT solver (2016)
,[72] SageMath mathematics software (2018)
, ,[73] Geometry and topology of three-manifolds, lecture notes (1980)
,[74] Three-dimensional geometry and topology, I, 35, Princeton Univ. Press (1997)
,[75] Rigorous computations with an approximate Dirichlet domain, Topology Appl. 268 (2019) | DOI
,[76] Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation, ACM Trans. Math. Softw. 25 (1999) 251 | DOI
,[77] PHCpack: solving polynomial systems via homotopy continuation (1999)
, ,[78] Computation of hyperbolic structures in knot theory, from: "Handbook of knot theory" (editors W Menasco, M Thistlethwaite), Elsevier (2005) 461 | DOI
,[79] bfh_python: computations in bordered Heegaard Floer homology (2014)
,[80] Ptolemy coordinates, Dehn invariant and the A–polynomial, Math. Z. 283 (2016) 515 | DOI
,Cité par Sources :