Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a graph manifold such that each piece of its JSJ decomposition has the geometry. Assume that the pieces are glued by isometries. Then there exists a complete Riemannian metric on which is an “eventually warped cusp metric” with the sectional curvature satisfying .
A theorem by Ontaneda then implies that appears as an end of a –dimensional, complete, noncompact Riemannian manifold of finite volume with sectional curvature satisfying .
Fujiwara, Koji 1 ; Shioya, Takashi 2
@article{GT_2020_24_4_a8, author = {Fujiwara, Koji and Shioya, Takashi}, title = {Graph manifolds as ends of negatively curved {Riemannian} manifolds}, journal = {Geometry & topology}, pages = {2035--2074}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2020}, doi = {10.2140/gt.2020.24.2035}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2035/} }
TY - JOUR AU - Fujiwara, Koji AU - Shioya, Takashi TI - Graph manifolds as ends of negatively curved Riemannian manifolds JO - Geometry & topology PY - 2020 SP - 2035 EP - 2074 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2035/ DO - 10.2140/gt.2020.24.2035 ID - GT_2020_24_4_a8 ER -
%0 Journal Article %A Fujiwara, Koji %A Shioya, Takashi %T Graph manifolds as ends of negatively curved Riemannian manifolds %J Geometry & topology %D 2020 %P 2035-2074 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2035/ %R 10.2140/gt.2020.24.2035 %F GT_2020_24_4_a8
Fujiwara, Koji; Shioya, Takashi. Graph manifolds as ends of negatively curved Riemannian manifolds. Geometry & topology, Tome 24 (2020) no. 4, pp. 2035-2074. doi : 10.2140/gt.2020.24.2035. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.2035/
[1] Graph manifolds, ends of negatively curved spaces and the hyperbolic 120–cell space, J. Differential Geom. 35 (1992) 299 | DOI
, ,[2] The virtual Haken conjecture, Doc. Math. 18 (2013) 1045 | DOI
,[3] Half-dimensional collapse of ends of manifolds of nonpositive curvature, Geom. Funct. Anal. 29 (2019) 1638 | DOI
, ,[4] Manifolds of nonpositive curvature, 61, Birkhäuser (1985) | DOI
, , ,[5] Complex hyperbolic hyperplane complements, Math. Ann. 353 (2012) 545 | DOI
,[6] An assortment of negatively curved ends, J. Topol. Anal. 5 (2013) 439 | DOI
,[7] Topology of open nonpositively curved manifolds, from: "Geometry, topology, and dynamics in negative curvature" (editors C S Aravinda, F T Farrell, J F Lafont), Lond. Math. Soc. Lect. Note Ser. 425, Cambridge Univ. Press (2016) 32 | DOI
,[8] Classification of negatively pinched manifolds with amenable fundamental groups, Acta Math. 196 (2006) 229 | DOI
, ,[9] An example of a four-dimensional manifold of negative curvature, Algebra i Analiz 5 (1993) 193
,[10] Geometrization of graph-manifolds, II : Isometric geometrization, Algebra i Analiz 7 (1995) 96
, ,[11] On the asymptotic geometry of nonpositively curved graphmanifolds, Trans. Amer. Math. Soc. 353 (2001) 853 | DOI
, ,[12] Topological and geometric properties of graph manifolds, Algebra i Analiz 16 (2004) 3
, ,[13] Closed hyperbolic 3–manifolds whose closed geodesics all are simple, J. Differential Geom. 38 (1993) 545 | DOI
, ,[14] Stable pseudoisotopy spaces of compact non-positively curved manifolds, J. Differential Geom. 34 (1991) 769 | DOI
, ,[15] Rigidity of high dimensional graph manifolds, 372, Soc. Math. France (2015) | DOI
, , ,[16] A construction of negatively curved manifolds, Proc. Japan Acad. Ser. A Math. Sci. 64 (1988) 352 | DOI
,[17] Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982) 5
,[18] 3–Manifold groups and nonpositive curvature, Geom. Funct. Anal. 8 (1998) 841 | DOI
, ,[19] 3–Manifolds with(out) metrics of nonpositive curvature, Invent. Math. 122 (1995) 277 | DOI
,[20] A geometric characteristic splitting in all dimensions, Comment. Math. Helv. 75 (2000) 201 | DOI
, ,[21] Survey on aspherical manifolds, from: "European Congress of Mathematics" (editors A Ran, H te Riele, J Wiegerinck), Eur. Math. Soc. (2010) 53 | DOI
,[22] Real hyperbolic hyperplane complements in the complex hyperbolic plane, Adv. Math. 338 (2018) 1038 | DOI
,[23] Nil happens. What about Sol?, preprint (2012)
,[24] Riemannian hyperbolization, Publ. Math. Inst. Hautes Études Sci. 131 (2020) 1 | DOI
,[25] The geometries of 3–manifolds, Bull. Lond. Math. Soc. 15 (1983) 401 | DOI
,Cité par Sources :