Towards conservativity of đ”Ÿm–stabilization
Geometry & topology, Tome 24 (2020) no. 4, pp. 1969-2034.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the interplay of the homotopy coniveau tower, the Rost–Schmid complex of a strictly homotopy invariant sheaf, and homotopy modules. For a strictly homotopy invariant sheaf M, smooth k–scheme X and q ≄ 0, we construct a new cycle complex C∗(X,M,q) and we prove that in favorable cases, C∗(X,M,q) is equivalent to the homotopy coniveau tower M(q)(X). To do so we establish moving lemmas for the Rost–Schmid complex. As an application we deduce a cycle complex model for Milnor–Witt motivic cohomology. Furthermore we prove that if M is a strictly homotopy invariant sheaf, then M−2 is a homotopy module. Finally we conjecture that for q > 0, Ï€ÂŻ0(M(q)) is a homotopy module, explain the significance of this conjecture for studying conservativity properties of the đ”Ÿm–stabilization functor 𝒼ℋS1 (k) →𝒼ℋ(k), and provide some evidence for the conjecture.

DOI : 10.2140/gt.2020.24.1969
Classification : 14F42, 19E15
Keywords: algebraic cycles, motivic cohomology, generalized motivic cohomology, motivic homotopy theory

Bachmann, Tom 1 ; Yakerson, Maria 2

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, United States
2 FakultÀt Mathematik, UniversitÀt Regensburg, Regensburg, Germany
@article{GT_2020_24_4_a7,
     author = {Bachmann, Tom and Yakerson, Maria},
     title = {Towards conservativity of {\ensuremath{\mathbb{G}}m{\textendash}stabilization}},
     journal = {Geometry & topology},
     pages = {1969--2034},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2020},
     doi = {10.2140/gt.2020.24.1969},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1969/}
}
TY  - JOUR
AU  - Bachmann, Tom
AU  - Yakerson, Maria
TI  - Towards conservativity of đ”Ÿm–stabilization
JO  - Geometry & topology
PY  - 2020
SP  - 1969
EP  - 2034
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1969/
DO  - 10.2140/gt.2020.24.1969
ID  - GT_2020_24_4_a7
ER  - 
%0 Journal Article
%A Bachmann, Tom
%A Yakerson, Maria
%T Towards conservativity of đ”Ÿm–stabilization
%J Geometry & topology
%D 2020
%P 1969-2034
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1969/
%R 10.2140/gt.2020.24.1969
%F GT_2020_24_4_a7
Bachmann, Tom; Yakerson, Maria. Towards conservativity of đ”Ÿm–stabilization. Geometry & topology, Tome 24 (2020) no. 4, pp. 1969-2034. doi : 10.2140/gt.2020.24.1969. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1969/

[1] A Ananyevskiy, A Neshitov, Framed and MW–transfers for homotopy modules, Selecta Math. 25 (2019) | DOI

[2] A Asok, J Fasel, Comparing Euler classes, Q. J. Math. 67 (2016) 603 | DOI

[3] T Bachmann, The generalized slices of Hermitian K–theory, J. Topol. 10 (2017) 1124 | DOI

[4] T Bachmann, On the conservativity of the functor assigning to a motivic spectrum its motive, Duke Math. J. 167 (2018) 1525 | DOI

[5] T Bachmann, Motivic Tambara functors, Math. Z. (2020) | DOI

[6] T Bachmann, J Fasel, On the effectivity of spectra representing motivic cohomology theories, preprint (2017)

[7] T Bachmann, M Hoyois, Norms in motivic homotopy theory, preprint (2017)

[8] P Belmans, A J De Jong, Others, The Stacks project, electronic reference (2005–)

[9] S Bloch, Algebraic cycles and higher K–theory, Adv. Math. 61 (1986) 267 | DOI

[10] B Calmùs, J Fasel, The category of finite MW–correspondences, preprint (2014)

[11] J L Colliot-ThĂ©lĂšne, R T Hoobler, B Kahn, The Bloch–Ogus–Gabber theorem, from: "Algebraic –theory" (editor V P Snaith), Fields Inst. Commun. 16, Amer. Math. Soc. (1997) 31 | DOI

[12] F Déglise, Finite correspondences and transfers over a regular base, from: "Algebraic cycles and motives, I" (editors J Nagel, C Peters), Lond. Math. Soc. Lect. Note Ser. 343, Cambridge Univ. Press (2007) 138 | DOI

[13] F DĂ©glise, J Fasel, MW–motivic complexes, preprint (2017)

[14] F Déglise, F Jin, A A Khan, Fundamental classes in motivic homotopy theory, preprint (2018)

[15] A Druzhinin, J I Kylling, Framed correspondences and the zeroth stable motivic homotopy group in odd characteristic, preprint (2018)

[16] A Druzhinin, I Panin, Surjectivity of the étale excision map for homotopy invariant framed presheaves, preprint (2018)

[17] E Elmanto, M Hoyois, A A Khan, V Sosnilo, M Yakerson, Motivic infinite loop spaces, preprint (2017)

[18] E Elmanto, M Hoyois, A A Khan, V Sosnilo, M Yakerson, Framed transfers and motivic fundamental classes, J. Topol. 13 (2020) 460 | DOI

[19] G Garkusha, I Panin, Homotopy invariant presheaves with framed transfers, Cambridge J. Math. 8 (2020) 1 | DOI

[20] A Grothendieck, ElĂ©ments de gĂ©omĂ©trie algĂ©brique, IV : Étude locale des schĂ©mas et des morphismes de schĂ©mas, III, Inst. Hautes Études Sci. Publ. Math. 28 (1966) 5

[21] M Hoyois, From algebraic cobordism to motivic cohomology, J. Reine Angew. Math. 702 (2015) 173 | DOI

[22] M Hoyois, The six operations in equivariant motivic homotopy theory, Adv. Math. 305 (2017) 197 | DOI

[23] B Iversen, Cohomology of sheaves, Springer (1986) | DOI

[24] W Kai, A moving lemma for algebraic cycles with modulus and contravariance, Int. Math. Res. Not. (2019) | DOI

[25] M Levine, Mixed motives, 57, Amer. Math. Soc. (1998) | DOI

[26] M Levine, Chow’s moving lemma and the homotopy coniveau tower, –Theory 37 (2006) 129 | DOI

[27] M Levine, The homotopy coniveau tower, J. Topol. 1 (2008) 217 | DOI

[28] M Levine, Slices and transfers, Doc. Math. Extra volume (2010) 393

[29] M Levine, The slice filtration and Grothendieck–Witt groups, Pure Appl. Math. Q. 7 (2011) 1543 | DOI

[30] M Levine, Toward an enumerative geometry with quadratic forms, preprint (2017)

[31] J Lurie, Higher topos theory, 170, Princeton Univ. Press (2009) | DOI

[32] J Lurie, Higher algebra, preprint (2017)

[33] F Morel, An introduction to A1–homotopy theory, from: "Contemporary developments in algebraic –theory" (editors M Karoubi, A O Kuku, C Pedrini), ICTP Lect. Notes 15, Abdus Salam Int. Cent. Theoret. Phys. (2004) 357

[34] F Morel, A1–algebraic topology over a field, 2052, Springer (2012) | DOI

[35] F Morel, V Voevodsky, A1–homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999) 45 | DOI

[36] M Rost, Chow groups with coefficients, Doc. Math. 1 (1996) 319

[37] V Voevodsky, Notes on framed correspondences, preprint (2001)

[38] V Voevodsky, Open problems in the motivic stable homotopy theory, I, from: "Motives, polylogarithms and Hodge theory, I" (editors F Bogomolov, L Katzarkov), Int. Press Lect. Ser. 3, International (2002) 3

[39] K Wickelgren, B Williams, The simplicial EHP sequence in A1–algebraic topology, Geom. Topol. 23 (2019) 1691 | DOI

Cité par Sources :