Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the interplay of the homotopy coniveau tower, the RostâSchmid complex of a strictly homotopy invariant sheaf, and homotopy modules. For a strictly homotopy invariant sheaf , smooth âscheme and , we construct a new cycle complex and we prove that in favorable cases, is equivalent to the homotopy coniveau tower . To do so we establish moving lemmas for the RostâSchmid complex. As an application we deduce a cycle complex model for MilnorâWitt motivic cohomology. Furthermore we prove that if is a strictly homotopy invariant sheaf, then is a homotopy module. Finally we conjecture that for , is a homotopy module, explain the significance of this conjecture for studying conservativity properties of the âstabilization functor , and provide some evidence for the conjecture.
Bachmann, Tom 1 ; Yakerson, Maria 2
@article{GT_2020_24_4_a7, author = {Bachmann, Tom and Yakerson, Maria}, title = {Towards conservativity of {\ensuremath{\mathbb{G}}m{\textendash}stabilization}}, journal = {Geometry & topology}, pages = {1969--2034}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2020}, doi = {10.2140/gt.2020.24.1969}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1969/} }
TY - JOUR AU - Bachmann, Tom AU - Yakerson, Maria TI - Towards conservativity of đŸmâstabilization JO - Geometry & topology PY - 2020 SP - 1969 EP - 2034 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1969/ DO - 10.2140/gt.2020.24.1969 ID - GT_2020_24_4_a7 ER -
Bachmann, Tom; Yakerson, Maria. Towards conservativity of đŸmâstabilization. Geometry & topology, Tome 24 (2020) no. 4, pp. 1969-2034. doi : 10.2140/gt.2020.24.1969. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1969/
[1] Framed and MWâtransfers for homotopy modules, Selecta Math. 25 (2019) | DOI
, ,[2] Comparing Euler classes, Q. J. Math. 67 (2016) 603 | DOI
, ,[3] The generalized slices of Hermitian Kâtheory, J. Topol. 10 (2017) 1124 | DOI
,[4] On the conservativity of the functor assigning to a motivic spectrum its motive, Duke Math. J. 167 (2018) 1525 | DOI
,[5] Motivic Tambara functors, Math. Z. (2020) | DOI
,[6] On the effectivity of spectra representing motivic cohomology theories, preprint (2017)
, ,[7] Norms in motivic homotopy theory, preprint (2017)
, ,[8] The Stacks project, electronic reference (2005â)
, , ,[9] Algebraic cycles and higher Kâtheory, Adv. Math. 61 (1986) 267 | DOI
,[10] The category of finite MWâcorrespondences, preprint (2014)
, ,[11] The BlochâOgusâGabber theorem, from: "Algebraic âtheory" (editor V P Snaith), Fields Inst. Commun. 16, Amer. Math. Soc. (1997) 31 | DOI
, , ,[12] Finite correspondences and transfers over a regular base, from: "Algebraic cycles and motives, I" (editors J Nagel, C Peters), Lond. Math. Soc. Lect. Note Ser. 343, Cambridge Univ. Press (2007) 138 | DOI
,[13] MWâmotivic complexes, preprint (2017)
, ,[14] Fundamental classes in motivic homotopy theory, preprint (2018)
, , ,[15] Framed correspondences and the zeroth stable motivic homotopy group in odd characteristic, preprint (2018)
, ,[16] Surjectivity of the étale excision map for homotopy invariant framed presheaves, preprint (2018)
, ,[17] Motivic infinite loop spaces, preprint (2017)
, , , , ,[18] Framed transfers and motivic fundamental classes, J. Topol. 13 (2020) 460 | DOI
, , , , ,[19] Homotopy invariant presheaves with framed transfers, Cambridge J. Math. 8 (2020) 1 | DOI
, ,[20] ElĂ©ments de gĂ©omĂ©trie algĂ©brique, IV : Ătude locale des schĂ©mas et des morphismes de schĂ©mas, III, Inst. Hautes Ătudes Sci. Publ. Math. 28 (1966) 5
,[21] From algebraic cobordism to motivic cohomology, J. Reine Angew. Math. 702 (2015) 173 | DOI
,[22] The six operations in equivariant motivic homotopy theory, Adv. Math. 305 (2017) 197 | DOI
,[23] Cohomology of sheaves, Springer (1986) | DOI
,[24] A moving lemma for algebraic cycles with modulus and contravariance, Int. Math. Res. Not. (2019) | DOI
,[25] Mixed motives, 57, Amer. Math. Soc. (1998) | DOI
,[26] Chowâs moving lemma and the homotopy coniveau tower, âTheory 37 (2006) 129 | DOI
,[27] The homotopy coniveau tower, J. Topol. 1 (2008) 217 | DOI
,[28] Slices and transfers, Doc. Math. Extra volume (2010) 393
,[29] The slice filtration and GrothendieckâWitt groups, Pure Appl. Math. Q. 7 (2011) 1543 | DOI
,[30] Toward an enumerative geometry with quadratic forms, preprint (2017)
,[31] Higher topos theory, 170, Princeton Univ. Press (2009) | DOI
,[32] Higher algebra, preprint (2017)
,[33] An introduction to A1âhomotopy theory, from: "Contemporary developments in algebraic âtheory" (editors M Karoubi, A O Kuku, C Pedrini), ICTP Lect. Notes 15, Abdus Salam Int. Cent. Theoret. Phys. (2004) 357
,[34] A1âalgebraic topology over a field, 2052, Springer (2012) | DOI
,[35] A1âhomotopy theory of schemes, Inst. Hautes Ătudes Sci. Publ. Math. 90 (1999) 45 | DOI
, ,[36] Chow groups with coefficients, Doc. Math. 1 (1996) 319
,[37] Notes on framed correspondences, preprint (2001)
,[38] Open problems in the motivic stable homotopy theory, I, from: "Motives, polylogarithms and Hodge theory, I" (editors F Bogomolov, L Katzarkov), Int. Press Lect. Ser. 3, International (2002) 3
,[39] The simplicial EHP sequence in A1âalgebraic topology, Geom. Topol. 23 (2019) 1691 | DOI
, ,Cité par Sources :