Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We establish the essentially optimal form of Donaldson’s geodesic stability conjecture regarding existence of constant scalar curvature Kähler metrics. We carry this out by exploring in detail the metric geometry of Mabuchi geodesic rays, and the uniform convexity properties of the space of Kähler metrics.
Darvas, Tamás 1 ; Lu, Chinh H 2
@article{GT_2020_24_4_a6, author = {Darvas, Tam\'as and Lu, Chinh H}, title = {Geodesic stability, the space of rays and uniform convexity in {Mabuchi} geometry}, journal = {Geometry & topology}, pages = {1907--1967}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2020}, doi = {10.2140/gt.2020.24.1907}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1907/} }
TY - JOUR AU - Darvas, Tamás AU - Lu, Chinh H TI - Geodesic stability, the space of rays and uniform convexity in Mabuchi geometry JO - Geometry & topology PY - 2020 SP - 1907 EP - 1967 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1907/ DO - 10.2140/gt.2020.24.1907 ID - GT_2020_24_4_a6 ER -
%0 Journal Article %A Darvas, Tamás %A Lu, Chinh H %T Geodesic stability, the space of rays and uniform convexity in Mabuchi geometry %J Geometry & topology %D 2020 %P 1907-1967 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1907/ %R 10.2140/gt.2020.24.1907 %F GT_2020_24_4_a6
Darvas, Tamás; Lu, Chinh H. Geodesic stability, the space of rays and uniform convexity in Mabuchi geometry. Geometry & topology, Tome 24 (2020) no. 4, pp. 1907-1967. doi : 10.2140/gt.2020.24.1907. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1907/
[1] Hamiltonian 2–forms in Kähler geometry, III : Extremal metrics and stability, Invent. Math. 173 (2008) 547 | DOI
, , , ,[2] Réduction du cas positif de l’équation de Monge–Ampère sur les variétés kählériennes compactes à la démonstration d’une inégalité, J. Funct. Anal. 57 (1984) 143 | DOI
,[3] Sharp uniform convexity and smoothness inequalities for trace norms, Invent. Math. 115 (1994) 463 | DOI
, , ,[4] Convexity of the K–energy on the space of Kähler metrics and uniqueness of extremal metrics, J. Amer. Math. Soc. 30 (2017) 1165 | DOI
, ,[5] Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties, J. Reine Angew. Math. 751 (2019) 27 | DOI
, , , , ,[6] A variational approach to complex Monge–Ampère equations, Publ. Math. Inst. Hautes Études Sci. 117 (2013) 179 | DOI
, , , ,[7] A variational approach to the Yau–Tian–Donaldson conjecture, preprint (2015)
, , ,[8] Convexity of the extended K–energy and the large time behavior of the weak Calabi flow, Geom. Topol. 21 (2017) 2945 | DOI
, , ,[9] Regularity of weak minimizers of the K–energy and applications to properness and K–stability, Ann. Sci. École Norm. Sup. 53 (2020) 267 | DOI
, , ,[10] Probability measures associated to geodesics in the space of Kähler metrics, from: "Algebraic and analytic microlocal analysis" (editors M Hitrik, D Tamarkin, B Tsygan, S Zelditch), Springer Proc. Math. Stat. 269, Springer (2018) 395 | DOI
,[11] The complex Monge–Ampère equation in Kähler geometry, from: "Pluripotential theory" (editors F Bracci, J E Fornæss), Lecture Notes in Math. 2075, Springer (2013) 95 | DOI
,[12] On regularization of plurisubharmonic functions on manifolds, Proc. Amer. Math. Soc. 135 (2007) 2089 | DOI
, ,[13] Variational and non-Archimedean aspects of the Yau–Tian–Donaldson conjecture, from: "Proceedings of the International Congress of Mathematicians, II" (editors B Sirakov, P N d Souza, M Viana), World Sci. (2018) 591
,[14] Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry, preprint (2018)
, ,[15] Monge–Ampère equations in big cohomology classes, Acta Math. 205 (2010) 199 | DOI
, , , ,[16] Regularizing properties of the Kähler–Ricci flow, from: "An introduction to the Kähler–Ricci flow" (editors S Boucksom, P Eyssidieux, V Guedj), Lecture Notes in Math. 2086, Springer (2013) 189 | DOI
, ,[17] Uniform K–stability, Duistermaat–Heckman measures and singularities of pairs, Ann. Inst. Fourier (Grenoble) 67 (2017) 743 | DOI
, , ,[18] Uniform K–stability and asymptotics of energy functionals in Kähler geometry, J. Eur. Math. Soc. 21 (2019) 2905 | DOI
, , ,[19] A non-Archimedean approach to K–stability, preprint (2018)
, ,[20] Metric spaces of non-positive curvature, 319, Springer (1999) | DOI
, ,[21] The geometry of geodesics, 6, Academic (1955)
,[22] The space of Kähler metrics, II, J. Differential Geom. 61 (2002) 173 | DOI
, ,[23] On the lower bound of the Mabuchi energy and its application, Int. Math. Res. Not. 2000 (2000) 607 | DOI
,[24] The space of Kähler metrics, J. Differential Geom. 56 (2000) 189 | DOI
,[25] On the constant scalar curvature Kähler metrics : apriori estimates, preprint (2017)
, ,[26] On the constant scalar curvature Kähler metrics : existence results, preprint (2018)
, ,[27] On the constant scalar curvature Kähler metrics : general automorphism group, preprint (2018)
, ,[28] Compactness of Kähler metrics with bounds on Ricci curvature and I functional, Calc. Var. Partial Differential Equations 58 (2019) | DOI
, , ,[29] Space of Kähler metrics, V : Kähler quantization, from: "Metric and differential geometry" (editors X Dai, X Rong), Progr. Math. 297, Birkhäuser (2012) 19 | DOI
, ,[30] On the C1,1 regularity of geodesics in the space of Kähler metrics, Ann. PDE 3 (2017) | DOI
, , ,[31] Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936) 396 | DOI
,[32] The Mabuchi geometry of finite energy classes, Adv. Math. 285 (2015) 182 | DOI
,[33] The Mabuchi completion of the space of Kähler potentials, Amer. J. Math. 139 (2017) 1275 | DOI
,[34] Weak geodesic rays in the space of Kähler potentials and the class E(X,ω), J. Inst. Math. Jussieu 16 (2017) 837 | DOI
,[35] Geometric pluripotential theory on Kähler manifolds, from: "Advances in complex geometry" (editors Y A Rubinstein, B Shiffman), Contemp. Math. 735, Amer. Math. Soc. (2019) 1 | DOI
,[36] L1 metric geometry of big cohomology classes, Ann. Inst. Fourier (Grenoble) 68 (2018) 3053 | DOI
, , ,[37] Monotonicity of nonpluripolar products and complex Monge–Ampère equations with prescribed singularity, Anal. PDE 11 (2018) 2049 | DOI
, , ,[38] On the singularity type of full mass currents in big cohomology classes, Compos. Math. 154 (2018) 380 | DOI
, , ,[39] Log-concavity of volume and complex Monge–Ampère equations with prescribed singularity, Math. Ann. (2019) | DOI
, , ,[40] The metric geometry of singularity types, J. Reine Angew. Math. (2020) | DOI
, , ,[41] Geodesic rays and Kähler–Ricci trajectories on Fano manifolds, Trans. Amer. Math. Soc. 369 (2017) 5069 | DOI
, ,[42] Weak geodesics in the space of Kähler metrics, Math. Res. Lett. 19 (2012) 1127 | DOI
, ,[43] Quantization in geometric pluripotential theory, Comm. Pure Appl. Math. 73 (2020) 1100 | DOI
, , ,[44] Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics, J. Amer. Math. Soc. 30 (2017) 347 | DOI
, ,[45] Regularization of closed positive currents and intersection theory, J. Algebraic Geom. 1 (1992) 361
,[46] Regularization of closed positive currents of type (1,1) by the flow of a Chern connection, from: "Contributions to complex analysis and analytic geometry" (editors H Skoda, J M Trépreau), Aspects Math. E26, Vieweg (1994) 105 | DOI
,[47] Uniform stability of twisted constant scalar curvature Kähler metrics, Int. Math. Res. Not. 2016 (2016) 4728 | DOI
,[48] The Kähler–Ricci flow and optimal degenerations, J. Differential Geom. 116 (2020) 187 | DOI
, ,[49] Geometry and topology of the space of Kähler metrics on singular varieties, Compos. Math. 154 (2018) 1593 | DOI
, ,[50] Uniqueness and short time regularity of the weak Kähler–Ricci flow, Adv. Math. 305 (2017) 953 | DOI
, ,[51] Symmetric spaces, Kähler geometry and Hamiltonian dynamics, from: "Northern California Symplectic Geometry Seminar" (editors Y Eliashberg, D Fuchs, T Ratiu, A Weinstein), Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc. (1999) 13 | DOI
,[52] Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002) 289 | DOI
,[53] Scalar curvature and projective embeddings, II, Q. J. Math. 56 (2005) 345 | DOI
,[54] An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73 (1983) 437 | DOI
,[55] Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (2005) 607 | DOI
, ,[56] The weighted Monge–Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007) 442 | DOI
, ,[57] Regularizing properties of the twisted Kähler–Ricci flow, J. Reine Angew. Math. 729 (2017) 275 | DOI
, ,[58] On the space of Kähler potentials, Comm. Pure Appl. Math. 68 (2015) 332 | DOI
,[59] On Calabi’s extremal metric and properness, Trans. Amer. Math. Soc. 372 (2019) 5595 | DOI
,[60] Nonpositive curvature: geometric and analytic aspects, Birkhäuser (1997) | DOI
,[61] Uniformly convex metric spaces, Anal. Geom. Metr. Spaces 2 (2014) 359 | DOI
,[62] The partial Legendre transformation for plurisubharmonic functions, Invent. Math. 49 (1978) 137 | DOI
,[63] Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. 86 (1997) 115 | DOI
, ,[64] The complex Monge–Ampère equation, Acta Math. 180 (1998) 69 | DOI
,[65] Jensen’s inequality on convex spaces, Calc. Var. Partial Differential Equations 49 (2014) 1359 | DOI
,[66] Special test configuration and K–stability of Fano varieties, Ann. of Math. 180 (2014) 197 | DOI
, ,[67] Some symplectic geometry on compact Kähler manifolds, I, Osaka J. Math. 24 (1987) 227
,[68] Poincaré inequalities, embeddings, and wild groups, Compos. Math. 147 (2011) 1546 | DOI
, ,[69] Convexities of metric spaces, Geom. Dedicata 125 (2007) 225 | DOI
,[70] The Monge–Ampère operator and geodesics in the space of Kähler potentials, Invent. Math. 166 (2006) 125 | DOI
, ,[71] Analytic test configurations and geodesic rays, J. Symplectic Geom. 12 (2014) 125 | DOI
, ,[72] Complex Monge–Ampère and symplectic manifolds, Amer. J. Math. 114 (1992) 495 | DOI
,[73] Bergman metrics and geodesics in the space of Kähler metrics on toric varieties, Anal. PDE 3 (2010) 295 | DOI
, ,[74] Extremal metrics and K–stability, PhD thesis, University of London (2006)
,[75] On Kähler–Einstein metrics on certain Kähler manifolds with C1(M) > 0, Invent. Math. 89 (1987) 225 | DOI
,[76] On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990) 99 | DOI
,[77] The K–energy on hypersurfaces and stability, Comm. Anal. Geom. 2 (1994) 239 | DOI
,[78] Kähler–Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997) 1 | DOI
,[79] Canonical metrics in Kähler geometry, Birkhäuser (2000) | DOI
,[80] Monotonicity of non-pluripolar Monge–Ampère masses, Indiana Univ. Math. J. 68 (2019) 579 | DOI
,[81] Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions, Indiana Univ. Math. J. 50 (2001) 671 | DOI
,[82] Existence of constant scalar curvature Kähler cone metrics, properness and geodesic stability, preprint (2018)
,Cité par Sources :