Contact handles, duality, and sutured Floer homology
Geometry & topology, Tome 24 (2020) no. 1, pp. 179-307.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give an explicit construction of the Honda–Kazez–Matić gluing maps in terms of contact handles. We use this to prove a duality result for turning a sutured manifold cobordism around and to compute the trace in the sutured Floer TQFT. We also show that the decorated link cobordism maps on the hat version of link Floer homology defined by the first author via sutured manifold cobordisms and by the second author via elementary cobordisms agree.

DOI : 10.2140/gt.2020.24.179
Classification : 57R58, 57M27, 57R17
Keywords: Heegaard Floer homology, cobordism, TQFT

Juhász, András 1 ; Zemke, Ian 2

1 Mathematical Institute, University of Oxford, Oxford, United Kingdom
2 Department of Mathematics, Princeton University, Princeton, NJ, United States
@article{GT_2020_24_1_a2,
     author = {Juh\'asz, Andr\'as and Zemke, Ian},
     title = {Contact handles, duality, and sutured {Floer} homology},
     journal = {Geometry & topology},
     pages = {179--307},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2020},
     doi = {10.2140/gt.2020.24.179},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.179/}
}
TY  - JOUR
AU  - Juhász, András
AU  - Zemke, Ian
TI  - Contact handles, duality, and sutured Floer homology
JO  - Geometry & topology
PY  - 2020
SP  - 179
EP  - 307
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.179/
DO  - 10.2140/gt.2020.24.179
ID  - GT_2020_24_1_a2
ER  - 
%0 Journal Article
%A Juhász, András
%A Zemke, Ian
%T Contact handles, duality, and sutured Floer homology
%J Geometry & topology
%D 2020
%P 179-307
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.179/
%R 10.2140/gt.2020.24.179
%F GT_2020_24_1_a2
Juhász, András; Zemke, Ian. Contact handles, duality, and sutured Floer homology. Geometry & topology, Tome 24 (2020) no. 1, pp. 179-307. doi : 10.2140/gt.2020.24.179. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.179/

[1] S Akbulut, Variations on Fintushel–Stern knot surgery on 4–manifolds, Turkish J. Math. 26 (2002) 81

[2] T Etgü, B Özbağcı, Partial open book decompositions and the contact class in sutured Floer homology, Turkish J. Math. 33 (2009) 295

[3] J Etnyre, Convex surfaces in contact geometry: class notes, course notes (2004)

[4] S Friedl, A Juhász, J Rasmussen, The decategorification of sutured Floer homology, J. Topol. 4 (2011) 431 | DOI

[5] D Gabai, Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445 | DOI

[6] E Giroux, Convexité en topologie de contact, Comment. Math. Helv. 66 (1991) 637 | DOI

[7] E Giroux, Structures de contact en dimension trois et bifurcations des feuilletages de surfaces, Invent. Math. 141 (2000) 615 | DOI

[8] E Giroux, Géométrie de contact : de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians, II" (editor T Li), Higher Ed. (2002) 405

[9] K Hendricks, C Manolescu, Involutive Heegaard Floer homology, Duke Math. J. 166 (2017) 1211 | DOI

[10] K Honda, On the classification of tight contact structures, I, Geom. Topol. 4 (2000) 309 | DOI

[11] K Honda, On the classification of tight contact structures, II, J. Differential Geom. 55 (2000) 83 | DOI

[12] K Honda, W H Kazez, G Matić, Contact structures, sutured Floer homology and TQFT, preprint (2008)

[13] K Honda, W H Kazez, G Matić, The contact invariant in sutured Floer homology, Invent. Math. 176 (2009) 637 | DOI

[14] A Juhász, Holomorphic discs and sutured manifolds, Algebr. Geom. Topol. 6 (2006) 1429 | DOI

[15] A Juhász, Cobordisms of sutured manifolds and the functoriality of link Floer homology, Adv. Math. 299 (2016) 940 | DOI

[16] A Juhász, M Marengon, Concordance maps in knot Floer homology, Geom. Topol. 20 (2016) 3623 | DOI

[17] A Juhász, M Marengon, Computing cobordism maps in link Floer homology and the reduced Khovanov TQFT, Selecta Math. 24 (2018) 1315 | DOI

[18] A Juhász, D P Thurston, I Zemke, Naturality and mapping class groups in Heegaard Floer homology, preprint (2012)

[19] R A Litherland, Deforming twist-spun knots, Trans. Amer. Math. Soc. 250 (1979) 311 | DOI

[20] R Lutz, Structures de contact sur les fibrés principaux en cercles de dimension trois, Ann. Inst. Fourier (Grenoble) 27 (1977) 1

[21] B Ozbagci, Contact handle decompositions, Topology Appl. 158 (2011) 718 | DOI

[22] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 | DOI

[23] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. 159 (2004) 1159 | DOI

[24] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027 | DOI

[25] P Ozsváth, Z Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326 | DOI

[26] P Ozsváth, Z Szabó, Holomorphic disks, link invariants and the multi-variable Alexander polynomial, Algebr. Geom. Topol. 8 (2008) 615 | DOI

[27] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)

[28] R Zarev, Joining and gluing sutured Floer homology, preprint (2010)

[29] I Zemke, Duality and mapping tori in Heegaard Floer homology, preprint (2018)

[30] I Zemke, Link cobordisms and functoriality in link Floer homology, J. Topol. 12 (2019) 94 | DOI

Cité par Sources :