Anomalous partially hyperbolic diffeomorphisms III: Abundance and incoherence
Geometry & topology, Tome 24 (2020) no. 4, pp. 1751-1790.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let M be a closed 3–manifold which admits an Anosov flow. We develop a technique for constructing partially hyperbolic representatives in many mapping classes of M. We apply this technique both in the setting of geodesic flows on closed hyperbolic surfaces and for Anosov flows which admit transverse tori. We emphasize the similarity of both constructions through the concept of h–transversality, a tool which allows us to compose different mapping classes while retaining partial hyperbolicity.

In the case of the geodesic flow of a closed hyperbolic surface S we build stably ergodic, partially hyperbolic diffeomorphisms whose mapping classes form a subgroup of the mapping class group (T1S) which is isomorphic to (S). At the same time we show that the totality of mapping classes which can be realized by partially hyperbolic diffeomorphisms does not form a subgroup of (T1S).

Finally, some of the examples on T1S are absolutely partially hyperbolic, stably ergodic and robustly nondynamically coherent, disproving a conjecture of Rodriguez Hertz, Rodriguez Hertz and Ures  (Ann. Inst. H Poincaré Anal. Non Linéaire 33 (2016) 1023–1032).

DOI : 10.2140/gt.2020.24.1751
Classification : 37C15, 37D30
Keywords: partially hyperbolic diffeomorphisms, dynamical coherence, stable ergodicity

Bonatti, Christian 1 ; Gogolev, Andrey 2 ; Hammerlindl, Andy 3 ; Potrie, Rafael 4

1 Institut de Mathématiques de Bourgogne, CNRS - URM 5584, Université de Bourgogne, Dijon, France
2 Department of Mathematics, The Ohio State University, Columbus, OH, United States
3 School of Mathematical Sciences, Monash University, Clayton VIC, Australia
4 Facultad de Ciencias - Centro de Matemática, Universidad de la República, Montevideo, Uruguay, Institute for Advanced Study, Princeton, NJ, United States
@article{GT_2020_24_4_a3,
     author = {Bonatti, Christian and Gogolev, Andrey and Hammerlindl, Andy and Potrie, Rafael},
     title = {Anomalous partially hyperbolic diffeomorphisms {III:} {Abundance} and incoherence},
     journal = {Geometry & topology},
     pages = {1751--1790},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2020},
     doi = {10.2140/gt.2020.24.1751},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1751/}
}
TY  - JOUR
AU  - Bonatti, Christian
AU  - Gogolev, Andrey
AU  - Hammerlindl, Andy
AU  - Potrie, Rafael
TI  - Anomalous partially hyperbolic diffeomorphisms III: Abundance and incoherence
JO  - Geometry & topology
PY  - 2020
SP  - 1751
EP  - 1790
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1751/
DO  - 10.2140/gt.2020.24.1751
ID  - GT_2020_24_4_a3
ER  - 
%0 Journal Article
%A Bonatti, Christian
%A Gogolev, Andrey
%A Hammerlindl, Andy
%A Potrie, Rafael
%T Anomalous partially hyperbolic diffeomorphisms III: Abundance and incoherence
%J Geometry & topology
%D 2020
%P 1751-1790
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1751/
%R 10.2140/gt.2020.24.1751
%F GT_2020_24_4_a3
Bonatti, Christian; Gogolev, Andrey; Hammerlindl, Andy; Potrie, Rafael. Anomalous partially hyperbolic diffeomorphisms III: Abundance and incoherence. Geometry & topology, Tome 24 (2020) no. 4, pp. 1751-1790. doi : 10.2140/gt.2020.24.1751. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1751/

[1] T Barbot, Mise en position optimale de tores par rapport à un flot d’Anosov, Comment. Math. Helv. 70 (1995) 113 | DOI

[2] F Béguin, C Bonatti, B Yu, Building Anosov flows on 3–manifolds, Geom. Topol. 21 (2017) 1837 | DOI

[3] C Bonatti, S Crovisier, Récurrence et généricité, Invent. Math. 158 (2004) 33 | DOI

[4] C Bonatti, L J Díaz, Persistent nonhyperbolic transitive diffeomorphisms, Ann. of Math. 143 (1996) 357 | DOI

[5] C Bonatti, L J Díaz, R Ures, Minimality of strong stable and unstable foliations for partially hyperbolic diffeomorphisms, J. Inst. Math. Jussieu 1 (2002) 513 | DOI

[6] C Bonatti, L J Díaz, M Viana, Dynamics beyond uniform hyperbolicity, 102, Springer (2005)

[7] C Bonatti, J Franks, A Hölder continuous vector field tangent to many foliations, from: "Modern dynamical systems and applications" (editors M Brin, B Hasselblatt, Y Pesin), Cambridge Univ. Press (2004) 299

[8] C Bonatti, A Gogolev, R Potrie, Anomalous partially hyperbolic diffeomorphisms, II : Stably ergodic examples, Invent. Math. 206 (2016) 801 | DOI

[9] C Bonatti, N Guelman, Axiom A diffeomorphisms derived from Anosov flows, J. Mod. Dyn. 4 (2010) 1 | DOI

[10] C Bonatti, R Langevin, Un exemple de flot d’Anosov transitif transverse à un tore et non conjugué à une suspension, Ergodic Theory Dynam. Systems 14 (1994) 633 | DOI

[11] C Bonatti, C Matheus, M Viana, A Wilkinson, Abundance of stable ergodicity, Comment. Math. Helv. 79 (2004) 753 | DOI

[12] C Bonatti, K Parwani, R Potrie, Anomalous partially hyperbolic diffeomorphisms, I : Dynamically coherent examples, Ann. Sci. École Norm. Sup. 49 (2016) 1387 | DOI

[13] C Bonatti, A Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3–manifolds, Topology 44 (2005) 475 | DOI

[14] C Bonatti, J Zhang, Transverse foliations on the torus T2 and partially hyperbolic diffeomorphisms on 3–manifolds, Comment. Math. Helv. 92 (2017) 513 | DOI

[15] M Brin, On dynamical coherence, Ergodic Theory Dynam. Systems 23 (2003) 395 | DOI

[16] M Brin, D Burago, S Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the 3–torus, J. Mod. Dyn. 3 (2009) 1 | DOI

[17] M Brunella, Separating the basic sets of a nontransitive Anosov flow, Bull. Lond. Math. Soc. 25 (1993) 487 | DOI

[18] D Burago, S Ivanov, Partially hyperbolic diffeomorphisms of 3–manifolds with abelian fundamental groups, J. Mod. Dyn. 2 (2008) 541 | DOI

[19] K Burns, A Wilkinson, Dynamical coherence and center bunching, Discrete Contin. Dyn. Syst. 22 (2008) 89 | DOI

[20] D Calegari, Foliations and the geometry of 3–manifolds, Oxford Univ. Press (2007)

[21] R D Canary, D Mccullough, Homotopy equivalences of 3–manifolds and deformation theory of Kleinian groups, 812, Amer. Math. Soc. (2004) | DOI

[22] P D Carrasco, F Rodriguez-Hertz, J Rodriguez-Hertz, R Ures, Partially hyperbolic dynamics in dimension three, Ergodic Theory Dynam. Systems 38 (2018) 2801 | DOI

[23] A J Casson, S A Bleiler, Automorphisms of surfaces after Nielsen and Thurston, 9, Cambridge Univ. Press (1988) | DOI

[24] B Farb, D Margalit, A primer on mapping class groups, 49, Princeton Univ. Press (2012)

[25] A Hammerlindl, R Potrie, Classification of partially hyperbolic diffeomorphisms in 3–manifolds with solvable fundamental group, J. Topol. 8 (2015) 842 | DOI

[26] A Hammerlindl, R Potrie, Partial hyperbolicity and classification: a survey, Ergodic Theory Dynam. Systems 38 (2018) 401 | DOI

[27] A Hammerlindl, R Potrie, M Shannon, Seifert manifolds admitting partially hyperbolic diffeomorphisms, J. Mod. Dyn. 12 (2018) 193 | DOI

[28] M Handel, W P Thurston, New proofs of some results of Nielsen, Adv. Math. 56 (1985) 173 | DOI

[29] K Johannson, Homotopy equivalences of 3–manifolds with boundaries, 761, Springer (1979) | DOI

[30] A Katok, B Hasselblatt, Introduction to the modern theory of dynamical systems, 54, Cambridge Univ. Press (1995) | DOI

[31] S Matsumoto, Some remarks on foliated S1 bundles, Invent. Math. 90 (1987) 343 | DOI

[32] D Mccullough, Virtually geometrically finite mapping class groups of 3–manifolds, J. Differential Geom. 33 (1991) 1 | DOI

[33] R T Miller, Geodesic laminations from Nielsen’s viewpoint, Adv. Math. 45 (1982) 189 | DOI

[34] R Potrie, A few remarks on partially hyperbolic diffeomorphisms of T3 isotopic to Anosov, J. Dynam. Differential Equations 26 (2014) 805 | DOI

[35] E R Pujals, M Sambarino, A sufficient condition for robustly minimal foliations, Ergodic Theory Dynam. Systems 26 (2006) 281 | DOI

[36] F Rodriguez Hertz, M A Rodriguez Hertz, A Tahzibi, R Ures, Creation of blenders in the conservative setting, Nonlinearity 23 (2010) 211 | DOI

[37] F Rodriguez Hertz, M A Rodriguez Hertz, R Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D–center bundle, Invent. Math. 172 (2008) 353 | DOI

[38] F Rodriguez Hertz, M A Rodriguez Hertz, R Ures, A non-dynamically coherent example on T3, Ann. Inst. H Poincaré Anal. Non Linéaire 33 (2016) 1023 | DOI

[39] Y Shi, Perturbations of partially hyperbolic automorphisms on Heisenberg nilmanifold, PhD thesis, Peking University (2014)

[40] W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988) 417 | DOI

[41] F Waldhausen, On irreducible 3–manifolds which are sufficiently large, Ann. of Math. 87 (1968) 56 | DOI

[42] A Wilkinson, Conservative partially hyperbolic dynamics, from: "Proceedings of the International Congress of Mathematicians, III" (editors R Bhatia, A Pal, G Rangarajan, V Srinivas, M Vanninathan), Hindustan (2010) 1816

Cité par Sources :