Homological eigenvalues of lifts of pseudo-Anosov mapping classes to finite covers
Geometry & topology, Tome 24 (2020) no. 4, pp. 1717-1750.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let Σ be a compact orientable surface of finite type with at least one boundary component. Let f Mod(Σ) be a pseudo-Anosov mapping class. We prove a conjecture of McMullen by showing that there exists a finite cover Σ̃ Σ and a lift f̃ of f such that f̃: H1(Σ̃, ) H1(Σ̃, ) has an eigenvalue off the unit circle.

DOI : 10.2140/gt.2020.24.1717
Classification : 20C12, 57M05, 57M60
Keywords: low-dimensional topology, mapping class groups, representation theory

Hadari, Asaf 1

1 Department of Mathematics, University of Hawaii, Honolulu, HI, United States
@article{GT_2020_24_4_a2,
     author = {Hadari, Asaf},
     title = {Homological eigenvalues of lifts of {pseudo-Anosov} mapping classes to finite covers},
     journal = {Geometry & topology},
     pages = {1717--1750},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2020},
     doi = {10.2140/gt.2020.24.1717},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1717/}
}
TY  - JOUR
AU  - Hadari, Asaf
TI  - Homological eigenvalues of lifts of pseudo-Anosov mapping classes to finite covers
JO  - Geometry & topology
PY  - 2020
SP  - 1717
EP  - 1750
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1717/
DO  - 10.2140/gt.2020.24.1717
ID  - GT_2020_24_4_a2
ER  - 
%0 Journal Article
%A Hadari, Asaf
%T Homological eigenvalues of lifts of pseudo-Anosov mapping classes to finite covers
%J Geometry & topology
%D 2020
%P 1717-1750
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1717/
%R 10.2140/gt.2020.24.1717
%F GT_2020_24_4_a2
Hadari, Asaf. Homological eigenvalues of lifts of pseudo-Anosov mapping classes to finite covers. Geometry & topology, Tome 24 (2020) no. 4, pp. 1717-1750. doi : 10.2140/gt.2020.24.1717. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1717/

[1] Y Algom-Kfir, E Hironaka, K Rafi, Digraphs and cycle polynomials for free-by-cyclic groups, Geom. Topol. 19 (2015) 1111 | DOI

[2] M Bestvina, M Handel, Train tracks and automorphisms of free groups, Ann. of Math. 135 (1992) 1 | DOI

[3] S Dowdall, I Kapovich, C J Leininger, McMullen polynomials and Lipschitz flows for free-by-cyclic groups, J. Eur. Math. Soc. 19 (2017) 3253 | DOI

[4] A Fathi, F Laudenbach, V Poénaru, editors, Travaux de Thurston sur les surfaces, 66–67, Soc. Math. France (1979) 284

[5] D Fried, The geometry of cross sections to flows, Topology 21 (1982) 353 | DOI

[6] F Grunewald, M Larsen, A Lubotzky, J Malestein, Arithmetic quotients of the mapping class group, Geom. Funct. Anal. 25 (2015) 1493 | DOI

[7] A Hadari, Every infinite order mapping class has an infinite order action on the homology of some finite cover, preprint (2015)

[8] M Hall Jr., Coset representations in free groups, Trans. Amer. Math. Soc. 67 (1949) 421 | DOI

[9] T Koberda, Asymptotic linearity of the mapping class group and a homological version of the Nielsen–Thurston classification, Geom. Dedicata 156 (2012) 13 | DOI

[10] T Koberda, Residual properties of fibered and hyperbolic 3–manifolds, Topology Appl. 160 (2013) 875 | DOI

[11] T Koberda, J Mangahas, An effective algebraic detection of the Nielsen–Thurston classification of mapping classes, J. Topol. Anal. 7 (2015) 1 | DOI

[12] A Lubotzky, C Meiri, Sieve methods in group theory, II : The mapping class group, Geom. Dedicata 159 (2012) 327 | DOI

[13] A Lubotzky, C Meiri, Sieve methods in group theory, III : Aut(Fn), Int. J. Algebra Comput. 22 (2012) | DOI

[14] J Malestein, J Souto, On genericity of pseudo-Anosovs in the Torelli group, Int. Math. Res. Not. 2013 (2013) 1434 | DOI

[15] C T Mcmullen, Entropy on Riemann surfaces and the Jacobians of finite covers, Comment. Math. Helv. 88 (2013) 953 | DOI

[16] A Putman, B Wieland, Abelian quotients of subgroups of the mappings class group and higher Prym representations, J. Lond. Math. Soc. 88 (2013) 79 | DOI

[17] T Sakasai, A survey of Magnus representations for mapping class groups and homology cobordisms of surfaces, from: "Handbook of Teichmüller theory, III" (editor A Papadopoulos), IRMA Lect. Math. Theor. Phys. 17, Eur. Math. Soc. (2012) 531 | DOI

[18] M Suzuki, Geometric interpretation of the Magnus representation of the mapping class group, Kobe J. Math. 22 (2005) 39

[19] W P Thurston, A norm for the homology of 3–manifolds, Mem. Amer. Math. Soc. 339, Amer. Math. Soc. (1986) 99

Cité par Sources :