Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a compact orientable surface of finite type with at least one boundary component. Let be a pseudo-Anosov mapping class. We prove a conjecture of McMullen by showing that there exists a finite cover and a lift of such that has an eigenvalue off the unit circle.
Hadari, Asaf 1
@article{GT_2020_24_4_a2, author = {Hadari, Asaf}, title = {Homological eigenvalues of lifts of {pseudo-Anosov} mapping classes to finite covers}, journal = {Geometry & topology}, pages = {1717--1750}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2020}, doi = {10.2140/gt.2020.24.1717}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1717/} }
TY - JOUR AU - Hadari, Asaf TI - Homological eigenvalues of lifts of pseudo-Anosov mapping classes to finite covers JO - Geometry & topology PY - 2020 SP - 1717 EP - 1750 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1717/ DO - 10.2140/gt.2020.24.1717 ID - GT_2020_24_4_a2 ER -
Hadari, Asaf. Homological eigenvalues of lifts of pseudo-Anosov mapping classes to finite covers. Geometry & topology, Tome 24 (2020) no. 4, pp. 1717-1750. doi : 10.2140/gt.2020.24.1717. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1717/
[1] Digraphs and cycle polynomials for free-by-cyclic groups, Geom. Topol. 19 (2015) 1111 | DOI
, , ,[2] Train tracks and automorphisms of free groups, Ann. of Math. 135 (1992) 1 | DOI
, ,[3] McMullen polynomials and Lipschitz flows for free-by-cyclic groups, J. Eur. Math. Soc. 19 (2017) 3253 | DOI
, , ,[4] Travaux de Thurston sur les surfaces, 66–67, Soc. Math. France (1979) 284
, , , editors,[5] The geometry of cross sections to flows, Topology 21 (1982) 353 | DOI
,[6] Arithmetic quotients of the mapping class group, Geom. Funct. Anal. 25 (2015) 1493 | DOI
, , , ,[7] Every infinite order mapping class has an infinite order action on the homology of some finite cover, preprint (2015)
,[8] Coset representations in free groups, Trans. Amer. Math. Soc. 67 (1949) 421 | DOI
,[9] Asymptotic linearity of the mapping class group and a homological version of the Nielsen–Thurston classification, Geom. Dedicata 156 (2012) 13 | DOI
,[10] Residual properties of fibered and hyperbolic 3–manifolds, Topology Appl. 160 (2013) 875 | DOI
,[11] An effective algebraic detection of the Nielsen–Thurston classification of mapping classes, J. Topol. Anal. 7 (2015) 1 | DOI
, ,[12] Sieve methods in group theory, II : The mapping class group, Geom. Dedicata 159 (2012) 327 | DOI
, ,[13] Sieve methods in group theory, III : Aut(Fn), Int. J. Algebra Comput. 22 (2012) | DOI
, ,[14] On genericity of pseudo-Anosovs in the Torelli group, Int. Math. Res. Not. 2013 (2013) 1434 | DOI
, ,[15] Entropy on Riemann surfaces and the Jacobians of finite covers, Comment. Math. Helv. 88 (2013) 953 | DOI
,[16] Abelian quotients of subgroups of the mappings class group and higher Prym representations, J. Lond. Math. Soc. 88 (2013) 79 | DOI
, ,[17] A survey of Magnus representations for mapping class groups and homology cobordisms of surfaces, from: "Handbook of Teichmüller theory, III" (editor A Papadopoulos), IRMA Lect. Math. Theor. Phys. 17, Eur. Math. Soc. (2012) 531 | DOI
,[18] Geometric interpretation of the Magnus representation of the mapping class group, Kobe J. Math. 22 (2005) 39
,[19] A norm for the homology of 3–manifolds, Mem. Amer. Math. Soc. 339, Amer. Math. Soc. (1986) 99
,Cité par Sources :