Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the topology and geometry of compact complex manifolds associated to Anosov representations of surface groups and other hyperbolic groups in a complex semisimple Lie group . We compute the homology of the manifolds obtained from –Fuchsian representations and their Anosov deformations, where is simple. We show that in sufficiently high rank, these quotient complex manifolds are not Kähler. We also obtain results about their Picard groups and existence of meromorphic functions.
In a final section, we apply our topological results to some explicit families of domains and derive closed formulas for certain topological invariants. We also show that the manifolds associated to Anosov deformations of –Fuchsian representations are topological fiber bundles over a surface, and we conjecture this holds for all simple .
Dumas, David 1 ; Sanders, Andrew 2
@article{GT_2020_24_4_a0, author = {Dumas, David and Sanders, Andrew}, title = {Geometry of compact complex manifolds associated to generalized {quasi-Fuchsian} representations}, journal = {Geometry & topology}, pages = {1615--1693}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2020}, doi = {10.2140/gt.2020.24.1615}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1615/} }
TY - JOUR AU - Dumas, David AU - Sanders, Andrew TI - Geometry of compact complex manifolds associated to generalized quasi-Fuchsian representations JO - Geometry & topology PY - 2020 SP - 1615 EP - 1693 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1615/ DO - 10.2140/gt.2020.24.1615 ID - GT_2020_24_4_a0 ER -
%0 Journal Article %A Dumas, David %A Sanders, Andrew %T Geometry of compact complex manifolds associated to generalized quasi-Fuchsian representations %J Geometry & topology %D 2020 %P 1615-1693 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1615/ %R 10.2140/gt.2020.24.1615 %F GT_2020_24_4_a0
Dumas, David; Sanders, Andrew. Geometry of compact complex manifolds associated to generalized quasi-Fuchsian representations. Geometry & topology, Tome 24 (2020) no. 4, pp. 1615-1693. doi : 10.2140/gt.2020.24.1615. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1615/
[1] Higgs bundles and geometric structures on manifolds, Symmetry Integrability Geom. Methods Appl. 15 (2019) | DOI
,[2] Projective structures with (quasi-)Hitchin holonomy, in preparation
, ,[3] The geometry of quasi-Hitchin symplectic representations, in preparation
, , ,[4] The Penrose transform : its interaction with representation theory, Oxford Univ. Press (1989)
, ,[5] Schubert cells and cohomology of the spaces G∕P, Uspehi Mat. Nauk 28 (1973) 3
, , ,[6] Combinatorics of Coxeter groups, 231, Springer (2005) | DOI
, ,[7] Homogeneous vector bundles, Ann. of Math. 66 (1957) 203 | DOI
,[8] Lie groups and Lie algebras, Chapters 4–6, Springer (2002)
,[9] Lectures on the geometry of flag varieties, from: "Topics in cohomological studies of algebraic varieties" (editor P Pragacz), Birkhäuser (2005) 33 | DOI
,[10] Representation theory and complex geometry, Birkhäuser (1997) | DOI
, ,[11] Lifting representations to covering groups, Adv. Math. 59 (1986) 64 | DOI
,[12] Les connexions infinitésimales dans un espace fibré différentiable, from: "Séminaire Bourbaki, 1949/1950", W A. Benjamin (1950)
,[13] Sur la convexité holomorphe des revêtements linéaires réductifs d’une variété projective algébrique complexe, Invent. Math. 156 (2004) 503 | DOI
,[14] Fractal geometry: mathematical foundations and applications, Wiley (2014)
,[15] Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006) 1 | DOI
, ,[16] Young tableaux: with applications to representation theory and geometry, 35, Cambridge Univ. Press (1997) | DOI
,[17] The symplectic nature of fundamental groups of surfaces, Adv. Math. 54 (1984) 200 | DOI
,[18] Sur quelques points d’algèbre homologique, Tohoku Math. J. 9 (1957) 119 | DOI
,[19] Anosov representations and proper actions, Geom. Topol. 21 (2017) 485 | DOI
, , , ,[20] Anosov representations: domains of discontinuity and applications, Invent. Math. 190 (2012) 357 | DOI
, ,[21] Removable singularities of cohomology classes in several complex variables, Amer. J. Math. 96 (1974) 498 | DOI
,[22] Lie groups and Teichmüller space, Topology 31 (1992) 449 | DOI
,[23] Dimension theory, 4, Princeton Univ. Press (1941)
, ,[24] Completely reducible Lie algebras of linear transformations, Proc. Amer. Math. Soc. 2 (1951) 105 | DOI
,[25] Representations of algebraic groups, 131, Academic (1987)
,[26] Discrete isometry groups of symmetric spaces, from: "Handbook of group actions, IV" (editors L Ji, A Papadopoulos, S T Yau), Adv. Lect. Math. 41, International (2018) 191
, ,[27] Morse actions of discrete groups on symmetric space, preprint (2014)
, , ,[28] Dynamics on flag manifolds: domains of proper discontinuity and cocompactness, Geom. Topol. 22 (2018) 157 | DOI
, , ,[29] The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959) 973 | DOI
,[30] Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006) 51 | DOI
,[31] Flag varieties, 63, Hermann (2001)
, ,[32] Criterion for smoothness of Schubert varieties in Sl(n)∕B, Proc. Indian Acad. Sci. Math. Sci. 100 (1990) 45 | DOI
, ,[33] Compact quotients of large domains in complex projective space, Ann. Inst. Fourier (Grenoble) 48 (1998) 223 | DOI
,[34] The Poincaré series of a Coxeter group, Math. Ann. 199 (1972) 161 | DOI
,[35] Schottky groups acting on homogeneous rational manifolds, J. Reine Angew. Math. 753 (2019) 23 | DOI
, ,[36] Singular points of complex hypersurfaces, 61, Princeton Univ. Press (1968)
,[37] On a nilpotent element in a semi-simple Lie algebra, C. R. (Dokl.) Acad. Sci. URSS 36 (1942) 83
,[38] Quantum product and parabolic orbits in homogeneous spaces, Comm. Algebra 42 (2014) 4679 | DOI
,[39] Courbes rationnelles sur les variétés homogènes, Ann. Inst. Fourier (Grenoble) 52 (2002) 105 | DOI
,[40] Conformality for a robust class of non-conformal attractors, preprint (2019)
, , ,[41] Complex Schottky groups, from: "Geometric methods in dynamics, II" (editors W de Melo, M Viana, J C Yoccoz), Astérisque 287, Soc. Math. France (2003) 251
, ,[42] Compact Lie groups, 235, Springer (2007) | DOI
,[43] Geometric invariant theory for principal three-dimensional subgroups acting on flag varieties, from: "Representation theory: current trends and perspectives" (editors H Krause, P Littelmann, G Malle, K H Neeb, C Schweigert), Eur. Math. Soc. (2017) 637 | DOI
, ,[44] On the removal of singularities of analytic sets, Michigan Math. J. 15 (1968) 111 | DOI
,[45] Character varieties, Trans. Amer. Math. Soc. 364 (2012) 5173 | DOI
,Cité par Sources :