Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We develop new techniques for understanding surfaces in via bridge trisections. Trisections are a novel approach to smooth –manifold topology, introduced by Gay and Kirby, that provide an avenue to apply –dimensional tools to –dimensional problems. Meier and Zupan subsequently developed the theory of bridge trisections for smoothly embedded surfaces in –manifolds. The main application of these techniques is a new proof of the Thom conjecture, which posits that algebraic curves in have minimal genus among all smoothly embedded, oriented surfaces in their homology class. This new proof is notable as it completely avoids any gauge theory or pseudoholomorphic curve techniques.
Lambert-Cole, Peter 1
@article{GT_2020_24_3_a8, author = {Lambert-Cole, Peter}, title = {Bridge trisections in {\ensuremath{\mathbb{C}}\ensuremath{\mathbb{P}}2} and the {Thom} conjecture}, journal = {Geometry & topology}, pages = {1571--1614}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2020}, doi = {10.2140/gt.2020.24.1571}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1571/} }
Lambert-Cole, Peter. Bridge trisections in ℂℙ2 and the Thom conjecture. Geometry & topology, Tome 24 (2020) no. 3, pp. 1571-1614. doi : 10.2140/gt.2020.24.1571. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1571/
[1] Exotic structures and adjunction inequality, Turkish J. Math. 21 (1997) 47
, ,[2] Entrelacements et équations de Pfaff, from: "Third Schnepfenried geometry conference, I" (editors T Bernard D. an Hangan, R Lutz), Astérisque 107–108, Soc. Math. France (1983) 87
,[3] From Stein to Weinstein and back, 59, Amer. Math. Soc. (2012) | DOI
, ,[4] Chirurgies d’indice un et isotopies de sphères dans les variétés de contact tendues, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 659 | DOI
,[5] Legendrian knots in overtwisted contact structures, preprint (2004)
,[6] Trisecting 4–manifolds, Geom. Topol. 20 (2016) 3097 | DOI
, ,[7] An introduction to contact topology, 109, Cambridge Univ. Press (2008) | DOI
,[8] The self-linking number in annulus and pants open book decompositions, Algebr. Geom. Topol. 11 (2011) 553 | DOI
, ,[9] Gauge theory for embedded surfaces, I, Topology 32 (1993) 773 | DOI
, ,[10] The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994) 797 | DOI
, ,[11] Bridge trisections in rational surfaces, preprint (2018)
, ,[12] Stein 4–manifolds with boundary and contact structures, Topology Appl. 88 (1998) 55 | DOI
, ,[13] Bridge trisections of knotted surfaces in S4, Trans. Amer. Math. Soc. 369 (2017) 7343 | DOI
, ,[14] Bridge trisections of knotted surfaces in 4–manifolds, Proc. Natl. Acad. Sci. USA 115 (2018) 10880 | DOI
, ,[15] A product formula for the Seiberg–Witten invariants and the generalized Thom conjecture, J. Differential Geom. 44 (1996) 706 | DOI
, , ,[16] The symplectic Thom conjecture, Ann. of Math. 151 (2000) 93 | DOI
, ,[17] Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179 | DOI
, ,[18] Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419 | DOI
,[19] Quasipositivity as an obstruction to sliceness, Bull. Amer. Math. Soc. 29 (1993) 51 | DOI
,[20] Rasmussen invariant, slice-Bennequin inequality, and sliceness of knots, J. Knot Theory Ramifications 16 (2007) 1403 | DOI
,[21] Bounds on genus and geometric intersections from cylindrical end moduli spaces, J. Differential Geom. 65 (2003) 469 | DOI
,Cité par Sources :