Bridge trisections in ℂℙ2 and the Thom conjecture
Geometry & topology, Tome 24 (2020) no. 3, pp. 1571-1614.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We develop new techniques for understanding surfaces in 2 via bridge trisections. Trisections are a novel approach to smooth 4–manifold topology, introduced by Gay and Kirby, that provide an avenue to apply 3–dimensional tools to 4–dimensional problems. Meier and Zupan subsequently developed the theory of bridge trisections for smoothly embedded surfaces in 4–manifolds. The main application of these techniques is a new proof of the Thom conjecture, which posits that algebraic curves in 2 have minimal genus among all smoothly embedded, oriented surfaces in their homology class. This new proof is notable as it completely avoids any gauge theory or pseudoholomorphic curve techniques.

DOI : 10.2140/gt.2020.24.1571
Classification : 57R17, 57R40
Keywords: Thom conjecture, 4–manifolds, bridge trisections, minimal genus

Lambert-Cole, Peter 1

1 School of Mathematics, Georgia Institute of Technology, Atlanta, GA, United States
@article{GT_2020_24_3_a8,
     author = {Lambert-Cole, Peter},
     title = {Bridge trisections in {\ensuremath{\mathbb{C}}\ensuremath{\mathbb{P}}2} and the {Thom} conjecture},
     journal = {Geometry & topology},
     pages = {1571--1614},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2020},
     doi = {10.2140/gt.2020.24.1571},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1571/}
}
TY  - JOUR
AU  - Lambert-Cole, Peter
TI  - Bridge trisections in ℂℙ2 and the Thom conjecture
JO  - Geometry & topology
PY  - 2020
SP  - 1571
EP  - 1614
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1571/
DO  - 10.2140/gt.2020.24.1571
ID  - GT_2020_24_3_a8
ER  - 
%0 Journal Article
%A Lambert-Cole, Peter
%T Bridge trisections in ℂℙ2 and the Thom conjecture
%J Geometry & topology
%D 2020
%P 1571-1614
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1571/
%R 10.2140/gt.2020.24.1571
%F GT_2020_24_3_a8
Lambert-Cole, Peter. Bridge trisections in ℂℙ2 and the Thom conjecture. Geometry & topology, Tome 24 (2020) no. 3, pp. 1571-1614. doi : 10.2140/gt.2020.24.1571. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1571/

[1] S Akbulut, R Matveyev, Exotic structures and adjunction inequality, Turkish J. Math. 21 (1997) 47

[2] D Bennequin, Entrelacements et équations de Pfaff, from: "Third Schnepfenried geometry conference, I" (editors T Bernard D. an Hangan, R Lutz), Astérisque 107–108, Soc. Math. France (1983) 87

[3] K Cieliebak, Y Eliashberg, From Stein to Weinstein and back, 59, Amer. Math. Soc. (2012) | DOI

[4] V Colin, Chirurgies d’indice un et isotopies de sphères dans les variétés de contact tendues, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 659 | DOI

[5] K Dymara, Legendrian knots in overtwisted contact structures, preprint (2004)

[6] D Gay, R Kirby, Trisecting 4–manifolds, Geom. Topol. 20 (2016) 3097 | DOI

[7] H Geiges, An introduction to contact topology, 109, Cambridge Univ. Press (2008) | DOI

[8] K Kawamuro, E Pavelescu, The self-linking number in annulus and pants open book decompositions, Algebr. Geom. Topol. 11 (2011) 553 | DOI

[9] P B Kronheimer, T S Mrowka, Gauge theory for embedded surfaces, I, Topology 32 (1993) 773 | DOI

[10] P B Kronheimer, T S Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994) 797 | DOI

[11] P Lambert-Cole, J Meier, Bridge trisections in rational surfaces, preprint (2018)

[12] P Lisca, G Matić, Stein 4–manifolds with boundary and contact structures, Topology Appl. 88 (1998) 55 | DOI

[13] J Meier, A Zupan, Bridge trisections of knotted surfaces in S4, Trans. Amer. Math. Soc. 369 (2017) 7343 | DOI

[14] J Meier, A Zupan, Bridge trisections of knotted surfaces in 4–manifolds, Proc. Natl. Acad. Sci. USA 115 (2018) 10880 | DOI

[15] J W Morgan, Z Szabó, C H Taubes, A product formula for the Seiberg–Witten invariants and the generalized Thom conjecture, J. Differential Geom. 44 (1996) 706 | DOI

[16] P Ozsváth, Z Szabó, The symplectic Thom conjecture, Ann. of Math. 151 (2000) 93 | DOI

[17] P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179 | DOI

[18] J Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419 | DOI

[19] L Rudolph, Quasipositivity as an obstruction to sliceness, Bull. Amer. Math. Soc. 29 (1993) 51 | DOI

[20] A N Shumakovitch, Rasmussen invariant, slice-Bennequin inequality, and sliceness of knots, J. Knot Theory Ramifications 16 (2007) 1403 | DOI

[21] S Strle, Bounds on genus and geometric intersections from cylindrical end moduli spaces, J. Differential Geom. 65 (2003) 469 | DOI

Cité par Sources :