Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study surfaces embedded in –manifolds. We give a complete set of moves relating banded unlink diagrams of isotopic surfaces in an arbitrary –manifold. This extends work of Swenton and Kearton–Kurlin in . As an application, we show that bridge trisections of isotopic surfaces in a trisected –manifold are related by a sequence of perturbations and deperturbations, affirmatively proving a conjecture of Meier and Zupan. We also exhibit several isotopies of unit surfaces in (ie spheres in the generating homology class), proving that many explicit unit surfaces are isotopic to the standard . This strengthens some previously known results about the Gluck twist in , related to Kirby problem 4.23.
Hughes, Mark C 1 ; Kim, Seungwon 2 ; Miller, Maggie 3
@article{GT_2020_24_3_a7, author = {Hughes, Mark C and Kim, Seungwon and Miller, Maggie}, title = {Isotopies of surfaces in 4{\textendash}manifolds via banded unlink diagrams}, journal = {Geometry & topology}, pages = {1519--1569}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2020}, doi = {10.2140/gt.2020.24.1519}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1519/} }
TY - JOUR AU - Hughes, Mark C AU - Kim, Seungwon AU - Miller, Maggie TI - Isotopies of surfaces in 4–manifolds via banded unlink diagrams JO - Geometry & topology PY - 2020 SP - 1519 EP - 1569 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1519/ DO - 10.2140/gt.2020.24.1519 ID - GT_2020_24_3_a7 ER -
%0 Journal Article %A Hughes, Mark C %A Kim, Seungwon %A Miller, Maggie %T Isotopies of surfaces in 4–manifolds via banded unlink diagrams %J Geometry & topology %D 2020 %P 1519-1569 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1519/ %R 10.2140/gt.2020.24.1519 %F GT_2020_24_3_a7
Hughes, Mark C; Kim, Seungwon; Miller, Maggie. Isotopies of surfaces in 4–manifolds via banded unlink diagrams. Geometry & topology, Tome 24 (2020) no. 3, pp. 1519-1569. doi : 10.2140/gt.2020.24.1519. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1519/
[1] Reidemeister moves for surface isotopies and their interpretation as moves to movies, J. Knot Theory Ramifications 2 (1993) 251 | DOI
, ,[2] Knotted surfaces and their diagrams, 55, Amer. Math. Soc. (1998)
, ,[3] The 0–concordance monoid is infinitely generated, preprint (2019)
, ,[4] The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982) 357 | DOI
,[5] The 4–dimensional light bulb theorem, J. Amer. Math. Soc. 33 (2020) 609 | DOI
,[6] Trisecting 4–manifolds, Geom. Topol. 20 (2016) 3097 | DOI
, ,[7] The embedding of two-spheres in the four-sphere, Trans. Amer. Math. Soc. 104 (1962) 308 | DOI
,[8] Knots in the 4–sphere, Comment. Math. Helv. 51 (1976) 585 | DOI
,[9] Gluck surgery and framed links in 4–manifolds, from: "Knots in Hellas ’98" (editors C M Gordon, V F R Jones, L H Kauffman, S Lambropoulou, J H Przytycki), Ser. Knots Everything 24, World Sci. (2000) 80 | DOI
, , ,[10] 0–Concordance of knotted surfaces and Alexander ideals, preprint (2019)
,[11] Nonorientable surfaces in 4–space, Osaka J. Math. 26 (1989) 367
,[12] 2–Dimensional braids and chart descriptions, from: "Topics in knot theory" (editor M E Bozhüyük), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 399, Kluwer (1993) 277
,[13] Braid and knot theory in dimension four, 95, Amer. Math. Soc. (2002) | DOI
,[14] A chord diagram of a ribbon surface-link, J. Knot Theory Ramifications 24 (2015) | DOI
,[15] Descriptions on surfaces in four-space, I : Normal forms, Math. Sem. Notes Kobe Univ. 10 (1982) 75
, , ,[16] All 2–dimensional links in 4–space live inside a universal 3–dimensional polyhedron, Algebr. Geom. Topol. 8 (2008) 1223 | DOI
, ,[17] Problems in low-dimensional topology, from: "Geometric topology", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 35
,[18] A note on 4–dimensional handlebodies, Bull. Soc. Math. France 100 (1972) 337
, ,[19] Deforming twist-spun knots, Trans. Amer. Math. Soc. 250 (1979) 311 | DOI
,[20] Classification of trisections and the generalized property R conjecture, Proc. Amer. Math. Soc. 144 (2016) 4983 | DOI
, , ,[21] Bridge trisections of knotted surfaces in S4, Trans. Amer. Math. Soc. 369 (2017) 7343 | DOI
, ,[22] Bridge trisections of knotted surfaces in 4-manifolds, Proc. Natl. Acad. Sci. USA 115 (2018) 10880 | DOI
, ,[23] Blowing up and down in 4–manifolds, PhD thesis, University of California, Berkeley (1977)
,[24] Band-sums are ribbon concordant to the connected sum, Proc. Amer. Math. Soc. 126 (1998) 3401 | DOI
,[25] Gluck twist on a certain family of 2–knots, Michigan Math. J. 61 (2012) 703 | DOI
, ,[26] Reidemeister-type moves for surfaces in four-dimensional space, from: "Knot theory" (editors V F R Jones, J Kania-Bartoszyńska, J H Przytycki, P Traczyk, V G Turaev), Banach Center Publ. 42, Polish Acad. Sci. Inst. Math. (1998) 347
,[27] Surfaces in 4–manifolds : concordance, isotopy, and surgery, Int. Math. Res. Not. 2015 (2015) 7950 | DOI
,[28] 0–Concordance of 2–knots, preprint (2019)
,[29] On a calculus for 2–knots and surfaces in 4–space, J. Knot Theory Ramifications 10 (2001) 1133 | DOI
,[30] Twist-roll spun knots, Proc. Amer. Math. Soc. 122 (1994) 597 | DOI
,[31] On ribbon 2–knots : the 3–manifold bounded by the 2–knots, Osaka Math. J. 6 (1969) 447
,[32] On a 2–knot group with nontrivial center, Bull. Austral. Math. Soc. 25 (1982) 321 | DOI
,[33] An enumeration of surfaces in four-space, Osaka J. Math. 31 (1994) 497
,[34] Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965) 471 | DOI
,[35] Bridge and pants complexities of knots, J. Lond. Math. Soc. 87 (2013) 43 | DOI
,Cité par Sources :