Isotopies of surfaces in 4–manifolds via banded unlink diagrams
Geometry & topology, Tome 24 (2020) no. 3, pp. 1519-1569.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study surfaces embedded in 4–manifolds. We give a complete set of moves relating banded unlink diagrams of isotopic surfaces in an arbitrary 4–manifold. This extends work of Swenton and Kearton–Kurlin in S4. As an application, we show that bridge trisections of isotopic surfaces in a trisected 4–manifold are related by a sequence of perturbations and deperturbations, affirmatively proving a conjecture of Meier and Zupan. We also exhibit several isotopies of unit surfaces in P2 (ie spheres in the generating homology class), proving that many explicit unit surfaces are isotopic to the standard P1. This strengthens some previously known results about the Gluck twist in S4, related to Kirby problem 4.23.

DOI : 10.2140/gt.2020.24.1519
Keywords: $4$–manifold, knot, surface, diagram

Hughes, Mark C 1 ; Kim, Seungwon 2 ; Miller, Maggie 3

1 Department of Mathematics, Brigham Young University, Provo, UT, United States
2 Center for Geometry and Physics, Institute for Basic Science (IBS), Pohang, South Korea
3 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, United States
@article{GT_2020_24_3_a7,
     author = {Hughes, Mark C and Kim, Seungwon and Miller, Maggie},
     title = {Isotopies of surfaces in 4{\textendash}manifolds via banded unlink diagrams},
     journal = {Geometry & topology},
     pages = {1519--1569},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2020},
     doi = {10.2140/gt.2020.24.1519},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1519/}
}
TY  - JOUR
AU  - Hughes, Mark C
AU  - Kim, Seungwon
AU  - Miller, Maggie
TI  - Isotopies of surfaces in 4–manifolds via banded unlink diagrams
JO  - Geometry & topology
PY  - 2020
SP  - 1519
EP  - 1569
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1519/
DO  - 10.2140/gt.2020.24.1519
ID  - GT_2020_24_3_a7
ER  - 
%0 Journal Article
%A Hughes, Mark C
%A Kim, Seungwon
%A Miller, Maggie
%T Isotopies of surfaces in 4–manifolds via banded unlink diagrams
%J Geometry & topology
%D 2020
%P 1519-1569
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1519/
%R 10.2140/gt.2020.24.1519
%F GT_2020_24_3_a7
Hughes, Mark C; Kim, Seungwon; Miller, Maggie. Isotopies of surfaces in 4–manifolds via banded unlink diagrams. Geometry & topology, Tome 24 (2020) no. 3, pp. 1519-1569. doi : 10.2140/gt.2020.24.1519. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1519/

[1] J S Carter, M Saito, Reidemeister moves for surface isotopies and their interpretation as moves to movies, J. Knot Theory Ramifications 2 (1993) 251 | DOI

[2] J S Carter, M Saito, Knotted surfaces and their diagrams, 55, Amer. Math. Soc. (1998)

[3] I Dai, M Miller, The 0–concordance monoid is infinitely generated, preprint (2019)

[4] M H Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982) 357 | DOI

[5] D Gabai, The 4–dimensional light bulb theorem, J. Amer. Math. Soc. 33 (2020) 609 | DOI

[6] D Gay, R Kirby, Trisecting 4–manifolds, Geom. Topol. 20 (2016) 3097 | DOI

[7] H Gluck, The embedding of two-spheres in the four-sphere, Trans. Amer. Math. Soc. 104 (1962) 308 | DOI

[8] C M Gordon, Knots in the 4–sphere, Comment. Math. Helv. 51 (1976) 585 | DOI

[9] K Habiro, Y Marumoto, Y Yamada, Gluck surgery and framed links in 4–manifolds, from: "Knots in Hellas ’98" (editors C M Gordon, V F R Jones, L H Kauffman, S Lambropoulou, J H Przytycki), Ser. Knots Everything 24, World Sci. (2000) 80 | DOI

[10] J Joseph, 0–Concordance of knotted surfaces and Alexander ideals, preprint (2019)

[11] S Kamada, Nonorientable surfaces in 4–space, Osaka J. Math. 26 (1989) 367

[12] S Kamada, 2–Dimensional braids and chart descriptions, from: "Topics in knot theory" (editor M E Bozhüyük), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 399, Kluwer (1993) 277

[13] S Kamada, Braid and knot theory in dimension four, 95, Amer. Math. Soc. (2002) | DOI

[14] A Kawauchi, A chord diagram of a ribbon surface-link, J. Knot Theory Ramifications 24 (2015) | DOI

[15] A Kawauchi, T Shibuya, S Suzuki, Descriptions on surfaces in four-space, I : Normal forms, Math. Sem. Notes Kobe Univ. 10 (1982) 75

[16] C Kearton, V Kurlin, All 2–dimensional links in 4–space live inside a universal 3–dimensional polyhedron, Algebr. Geom. Topol. 8 (2008) 1223 | DOI

[17] R C Kirby Editor, Problems in low-dimensional topology, from: "Geometric topology", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 35

[18] F Laudenbach, V Poénaru, A note on 4–dimensional handlebodies, Bull. Soc. Math. France 100 (1972) 337

[19] R A Litherland, Deforming twist-spun knots, Trans. Amer. Math. Soc. 250 (1979) 311 | DOI

[20] J Meier, T Schirmer, A Zupan, Classification of trisections and the generalized property R conjecture, Proc. Amer. Math. Soc. 144 (2016) 4983 | DOI

[21] J Meier, A Zupan, Bridge trisections of knotted surfaces in S4, Trans. Amer. Math. Soc. 369 (2017) 7343 | DOI

[22] J Meier, A Zupan, Bridge trisections of knotted surfaces in 4-manifolds, Proc. Natl. Acad. Sci. USA 115 (2018) 10880 | DOI

[23] P M Melvin, Blowing up and down in 4–manifolds, PhD thesis, University of California, Berkeley (1977)

[24] K Miyazaki, Band-sums are ribbon concordant to the connected sum, Proc. Amer. Math. Soc. 126 (1998) 3401 | DOI

[25] D Nash, A I Stipsicz, Gluck twist on a certain family of 2–knots, Michigan Math. J. 61 (2012) 703 | DOI

[26] D Roseman, Reidemeister-type moves for surfaces in four-dimensional space, from: "Knot theory" (editors V F R Jones, J Kania-Bartoszyńska, J H Przytycki, P Traczyk, V G Turaev), Banach Center Publ. 42, Polish Acad. Sci. Inst. Math. (1998) 347

[27] N S Sunukjian, Surfaces in 4–manifolds : concordance, isotopy, and surgery, Int. Math. Res. Not. 2015 (2015) 7950 | DOI

[28] N Sunukjian, 0–Concordance of 2–knots, preprint (2019)

[29] F J Swenton, On a calculus for 2–knots and surfaces in 4–space, J. Knot Theory Ramifications 10 (2001) 1133 | DOI

[30] M Teragaito, Twist-roll spun knots, Proc. Amer. Math. Soc. 122 (1994) 597 | DOI

[31] T Yanagawa, On ribbon 2–knots : the 3–manifold bounded by the 2–knots, Osaka Math. J. 6 (1969) 447

[32] K Yoshikawa, On a 2–knot group with nontrivial center, Bull. Austral. Math. Soc. 25 (1982) 321 | DOI

[33] K Yoshikawa, An enumeration of surfaces in four-space, Osaka J. Math. 31 (1994) 497

[34] E C Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965) 471 | DOI

[35] A Zupan, Bridge and pants complexities of knots, J. Lond. Math. Soc. 87 (2013) 43 | DOI

Cité par Sources :