Classification of tight contact structures on surgeries on the figure-eight knot
Geometry & topology, Tome 24 (2020) no. 3, pp. 1457-1517.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Two of the basic questions in contact topology are which manifolds admit tight contact structures, and on those that do, whether we can classify such structures. We present the first such classification on an infinite family of (mostly) hyperbolic 3–manifolds: surgeries on the figure-eight knot. We also determine which of the tight contact structures are symplectically fillable and which are universally tight.

DOI : 10.2140/gt.2020.24.1457
Classification : 57R17
Keywords: contact geometry, contact structure, figure-eight knot, surgery, tight, overtwisted

Conway, James 1 ; Min, Hyunki 2

1 Department of Mathematics, University of California, Berkeley, Berkeley, CA, United States
2 School of Mathematics, Georgia Institute of Technology, Atlanta, GA, United States
@article{GT_2020_24_3_a6,
     author = {Conway, James and Min, Hyunki},
     title = {Classification of tight contact structures on surgeries on the figure-eight knot},
     journal = {Geometry & topology},
     pages = {1457--1517},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2020},
     doi = {10.2140/gt.2020.24.1457},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1457/}
}
TY  - JOUR
AU  - Conway, James
AU  - Min, Hyunki
TI  - Classification of tight contact structures on surgeries on the figure-eight knot
JO  - Geometry & topology
PY  - 2020
SP  - 1457
EP  - 1517
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1457/
DO  - 10.2140/gt.2020.24.1457
ID  - GT_2020_24_3_a6
ER  - 
%0 Journal Article
%A Conway, James
%A Min, Hyunki
%T Classification of tight contact structures on surgeries on the figure-eight knot
%J Geometry & topology
%D 2020
%P 1457-1517
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1457/
%R 10.2140/gt.2020.24.1457
%F GT_2020_24_3_a6
Conway, James; Min, Hyunki. Classification of tight contact structures on surgeries on the figure-eight knot. Geometry & topology, Tome 24 (2020) no. 3, pp. 1457-1517. doi : 10.2140/gt.2020.24.1457. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1457/

[1] K Baker, J Etnyre, Rational linking and contact geometry, from: "Perspectives in analysis, geometry, and topology" (editors I Itenberg, B Jöricke, M Passare), Progr. Math. 296, Springer (2012) 19 | DOI

[2] K L Baker, J B Etnyre, J Van Horn-Morris, Cabling, contact structures and mapping class monoids, J. Differential Geom. 90 (2012) 1 | DOI

[3] J A Baldwin, J B Etnyre, Admissible transverse surgery does not preserve tightness, Math. Ann. 357 (2013) 441 | DOI

[4] T Cofer, A class of tight contact structures on Σ2 × I, Algebr. Geom. Topol. 4 (2004) 961 | DOI

[5] V Colin, Chirurgies d’indice un et isotopies de sphères dans les variétés de contact tendues, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 659 | DOI

[6] V Colin, Recollement de variétés de contact tendues, Bull. Soc. Math. France 127 (1999) 43 | DOI

[7] V Colin, E Giroux, K Honda, Finitude homotopique et isotopique des structures de contact tendues, Publ. Math. Inst. Hautes Études Sci. 109 (2009) 245 | DOI

[8] J Conway, Contact surgeries on Legendrian figure-eight knots, J. Symplectic Geom. 17 (2019) 1061 | DOI

[9] J Conway, Tight contact structures via admissible transverse surgery, J. Knot Theory Ramifications 28 (2019) | DOI

[10] J Conway, Transverse surgery on knots in contact 3–manifolds, Trans. Amer. Math. Soc. 372 (2019) 1671 | DOI

[11] F Ding, H Geiges, A Legendrian surgery presentation of contact 3–manifolds, Math. Proc. Cambridge Philos. Soc. 136 (2004) 583 | DOI

[12] Y Eliashberg, Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623 | DOI

[13] Y Eliashberg, Topological characterization of Stein manifolds of dimension > 2, Internat. J. Math. 1 (1990) 29 | DOI

[14] Y M Eliashberg, W P Thurston, Confoliations, 13, Amer. Math. Soc. (1998)

[15] J B Etnyre, Convex surfaces in contact geometry: class notes, (2004)

[16] J B Etnyre, Legendrian and transversal knots, from: "Handbook of knot theory" (editors W Menasco, M Thistlethwaite), Elsevier (2005) 105 | DOI

[17] J B Etnyre, Lectures on open book decompositions and contact structures, from: "Floer homology, gauge theory, and low-dimensional topology" (editors D A Ellwood, P S Ozsváth, A I Stipsicz, Z Szabó), Clay Math. Proc. 5, Amer. Math. Soc. (2006) 103

[18] J B Etnyre, K Honda, Knots and contact geometry, I : Torus knots and the figure eight knot, J. Symplectic Geom. 1 (2001) 63 | DOI

[19] J B Etnyre, K Honda, On the nonexistence of tight contact structures, Ann. of Math. 153 (2001) 749 | DOI

[20] J B Etnyre, D S Vela-Vick, Torsion and open book decompositions, Int. Math. Res. Not. 2010 (2010) 4385 | DOI

[21] D Gabai, Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445 | DOI

[22] D T Gay, A I Stipsicz, On symplectic caps, from: "Perspectives in analysis, geometry, and topology" (editors I Itenberg, B Jöricke, M Passare), Progr. Math. 296, Springer (2012) 199 | DOI

[23] H Geiges, An introduction to contact topology, 109, Cambridge Univ. Press (2008) | DOI

[24] P Ghiggini, Strongly fillable contact 3–manifolds without Stein fillings, Geom. Topol. 9 (2005) 1677 | DOI

[25] P Ghiggini, On tight contact structures with negative maximal twisting number on small Seifert manifolds, Algebr. Geom. Topol. 8 (2008) 381 | DOI

[26] P Ghiggini, P Lisca, A I Stipsicz, Classification of tight contact structures on small Seifert 3–manifolds with e0 ≥ 0, Proc. Amer. Math. Soc. 134 (2006) 909 | DOI

[27] P Ghiggini, P Lisca, A I Stipsicz, Tight contact structures on some small Seifert fibered 3–manifolds, Amer. J. Math. 129 (2007) 1403 | DOI

[28] E Giroux, Convexité en topologie de contact, Comment. Math. Helv. 66 (1991) 637 | DOI

[29] E Giroux, Structures de contact en dimension trois et bifurcations des feuilletages de surfaces, Invent. Math. 141 (2000) 615 | DOI

[30] E Giroux, Structures de contact sur les variétés fibrées en cercles audessus d’une surface, Comment. Math. Helv. 76 (2001) 218 | DOI

[31] R E Gompf, Handlebody construction of Stein surfaces, Ann. of Math. 148 (1998) 619 | DOI

[32] K Honda, On the classification of tight contact structures, I, Geom. Topol. 4 (2000) 309 | DOI

[33] K Honda, On the classification of tight contact structures, II, J. Differential Geom. 55 (2000) 83 | DOI

[34] K Honda, Gluing tight contact structures, Duke Math. J. 115 (2002) 435 | DOI

[35] K Honda, W H Kazez, G Matić, Convex decomposition theory, Int. Math. Res. Not. 2002 (2002) 55 | DOI

[36] K Honda, W H Kazez, G Matić, Tight contact structures on fibered hyperbolic 3–manifolds, J. Differential Geom. 64 (2003) 305 | DOI

[37] K Honda, W H Kazez, G Matić, Pinwheels and bypasses, Algebr. Geom. Topol. 5 (2005) 769 | DOI

[38] K Honda, W H Kazez, G Matić, Right-veering diffeomorphisms of compact surfaces with boundary, Invent. Math. 169 (2007) 427 | DOI

[39] Y Kanda, On the Thurston–Bennequin invariant of Legendrian knots and nonexactness of Bennequin’s inequality, Invent. Math. 133 (1998) 227 | DOI

[40] M Korkmaz, B Ozbagci, On sections of elliptic fibrations, Michigan Math. J. 56 (2008) 77 | DOI

[41] Y Li, Z Wu, A bound for rational Thurston–Bennequin invariants, Geom. Dedicata 200 (2019) 371 | DOI

[42] P Lisca, G Matić, Tight contact structures and Seiberg–Witten invariants, Invent. Math. 129 (1997) 509 | DOI

[43] P Lisca, A I Stipsicz, Seifert fibered contact three-manifolds via surgery, Algebr. Geom. Topol. 4 (2004) 199 | DOI

[44] P Lisca, A I Stipsicz, On the existence of tight contact structures on Seifert fibered 3–manifolds, Duke Math. J. 148 (2009) 175 | DOI

[45] T E Mark, B Tosun, Obstructing pseudoconvex embeddings and contractible Stein fillings for Brieskorn spheres, Adv. Math. 335 (2018) 878 | DOI

[46] I Matkovič, Classification of tight contact structures on small Seifert fibered L–spaces, Algebr. Geom. Topol. 18 (2018) 111 | DOI

[47] H Min, Classification of tight contact structures on some families of hyperbolic L–spaces, in preparation

[48] H Ohta, K Ono, Simple singularities and topology of symplectically filling 4–manifold, Comment. Math. Helv. 74 (1999) 575 | DOI

[49] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. 159 (2004) 1159 | DOI

[50] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027 | DOI

[51] P Ozsváth, Z Szabó, Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39 | DOI

[52] O Plamenevskaya, Contact structures with distinct Heegaard Floer invariants, Math. Res. Lett. 11 (2004) 547 | DOI

[53] R Roberts, Constructing taut foliations, Comment. Math. Helv. 70 (1995) 516 | DOI

[54] D Rolfsen, Knots and links, 7, Publish or Perish (1976)

[55] H E Rose, A course in number theory, Clarendon (1994)

[56] J Simone, Tight contact structures on some plumbed 3–manifolds, preprint (2017)

[57] W P Thurston, The geometry and topology of three-manifolds, lecture notes (1979)

[58] B Tosun, Tight small Seifert fibered manifolds with e0 = −2, Algebr. Geom. Topol. 20 (2020) 1 | DOI

[59] J Van Horn-Morris, Constructions of open book decompositions, PhD thesis, The University of Texas at Austin (2007)

[60] A Weinstein, Contact surgery and symplectic handlebodies, Hokkaido Math. J. 20 (1991) 241 | DOI

[61] C Wendl, Non-exact symplectic cobordisms between contact 3–manifolds, J. Differential Geom. 95 (2013) 121 | DOI

[62] H Wu, Legendrian vertical circles in small Seifert spaces, Commun. Contemp. Math. 8 (2006) 219 | DOI

Cité par Sources :