A gluing formula for families Seiberg–Witten invariants
Geometry & topology, Tome 24 (2020) no. 3, pp. 1381-1456.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove a gluing formula for the families Seiberg–Witten invariants of families of 4–manifolds obtained by fibrewise connected sum. Our formula expresses the families Seiberg–Witten invariants of such a connected sum family in terms of the ordinary Seiberg–Witten invariants of one of the summands, under certain assumptions on the families. We construct some variants of the families Seiberg–Witten invariants and prove the gluing formula also for these variants. One variant incorporates a twist of the families moduli space using the charge conjugation symmetry of the Seiberg–Witten equations. The other variant is an equivariant Seiberg–Witten invariant of smooth group actions. We consider several applications of the gluing formula, including obstructions to smooth isotopy of diffeomorphisms, computation of the mod 2 Seiberg–Witten invariants of spin structures, and relations between mod 2 Seiberg–Witten invariants of 4–manifolds and obstructions to the existence of invariant metrics of positive scalar curvature for smooth group actions on 4–manifolds.

DOI : 10.2140/gt.2020.24.1381
Classification : 57R57, 57M60, 57R22
Keywords: Seiberg–Witten, $4$–manifolds, gauge theory, group actions, diffeomorphisms

Baraglia, David 1 ; Konno, Hokuto 2

1 School of Mathematical Sciences, The University of Adelaide, Adelaide SA, Australia
2 Graduate School of Mathematical Sciences, The University of Tokyo, Meguro, Tokyo, Japan
@article{GT_2020_24_3_a5,
     author = {Baraglia, David and Konno, Hokuto},
     title = {A gluing formula for families {Seiberg{\textendash}Witten} invariants},
     journal = {Geometry & topology},
     pages = {1381--1456},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2020},
     doi = {10.2140/gt.2020.24.1381},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1381/}
}
TY  - JOUR
AU  - Baraglia, David
AU  - Konno, Hokuto
TI  - A gluing formula for families Seiberg–Witten invariants
JO  - Geometry & topology
PY  - 2020
SP  - 1381
EP  - 1456
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1381/
DO  - 10.2140/gt.2020.24.1381
ID  - GT_2020_24_3_a5
ER  - 
%0 Journal Article
%A Baraglia, David
%A Konno, Hokuto
%T A gluing formula for families Seiberg–Witten invariants
%J Geometry & topology
%D 2020
%P 1381-1456
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1381/
%R 10.2140/gt.2020.24.1381
%F GT_2020_24_3_a5
Baraglia, David; Konno, Hokuto. A gluing formula for families Seiberg–Witten invariants. Geometry & topology, Tome 24 (2020) no. 3, pp. 1381-1456. doi : 10.2140/gt.2020.24.1381. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1381/

[1] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry, I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43 | DOI

[2] D Baraglia, Obstructions to smooth group actions on 4–manifolds from families Seiberg–Witten theory, Adv. Math. 354 (2019) | DOI

[3] S Bauer, M Furuta, A stable cohomotopy refinement of Seiberg–Witten invariants, I, Invent. Math. 155 (2004) 1 | DOI

[4] J Bryan, Seiberg–Witten theory and Z∕2p actions on spin 4–manifolds, Math. Res. Lett. 5 (1998) 165 | DOI

[5] S K Donaldson, The Seiberg–Witten equations and 4–manifold topology, Bull. Amer. Math. Soc. 33 (1996) 45 | DOI

[6] S K Donaldson, Floer homology groups in Yang–Mills theory, 147, Cambridge Univ. Press (2002) | DOI

[7] K A Frøyshov, Compactness and gluing theory for monopoles, 15, Geom. Topol. Publ. (2008)

[8] R E Gompf, Sums of elliptic surfaces, J. Differential Geom. 34 (1991) 93 | DOI

[9] W H Kazez, editor, Geometric topology, 2, Amer. Math. Soc. (1997)

[10] H Konno, Characteristic classes via 4–dimensional gauge theory, preprint (2018)

[11] C Lebrun, Scalar curvature, covering spaces, and Seiberg–Witten theory, New York J. Math. 9 (2003) 93

[12] T J Li, A K Liu, Family Seiberg–Witten invariants and wall crossing formulas, Comm. Anal. Geom. 9 (2001) 777 | DOI

[13] A K Liu, Family blowup formula, admissible graphs and the enumeration of singular curves, I, J. Differential Geom. 56 (2000) 381 | DOI

[14] J W Morgan, Z Szabó, Homotopy K3 surfaces and mod 2 Seiberg–Witten invariants, Math. Res. Lett. 4 (1997) 17 | DOI

[15] N Nakamura, The Seiberg–Witten equations for families and diffeomorphisms of 4–manifolds, Asian J. Math. 7 (2003) 133 | DOI

[16] L I Nicolaescu, Notes on Seiberg–Witten theory, 28, Amer. Math. Soc. (2000) | DOI

[17] L I Nicolaescu, On the Cappell–Lee–Miller gluing theorem, Pacific J. Math. 206 (2002) 159 | DOI

[18] F Quinn, Isotopy of 4–manifolds, J. Differential Geom. 24 (1986) 343 | DOI

[19] D Ruberman, An obstruction to smooth isotopy in dimension 4, Math. Res. Lett. 5 (1998) 743 | DOI

[20] D Ruberman, A polynomial invariant of diffeomorphisms of 4–manifolds, from: "Proceedings of the Kirbyfest" (editors J Hass, M Scharlemann), Geom. Topol. Monogr. 2, Geom. Topol. Publ. (1999) 473 | DOI

[21] D Ruberman, Positive scalar curvature, diffeomorphisms and the Seiberg–Witten invariants, Geom. Topol. 5 (2001) 895 | DOI

[22] D Salamon, Spin geometry and Seiberg–Witten invariants, unpublished notes (1999)

[23] S Strle, Bounds on genus and geometric intersections from cylindrical end moduli spaces, J. Differential Geom. 65 (2003) 469 | DOI

[24] C T C Wall, Diffeomorphisms of 4–manifolds, J. London Math. Soc. 39 (1964) 131 | DOI

Cité par Sources :