The quantum tropical vertex
Geometry & topology, Tome 24 (2020) no. 3, pp. 1297-1379.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Gross, Pandharipande and Siebert have shown that the 2–dimensional Kontsevich–Soibelman scattering diagrams compute certain genus-zero log Gromov–Witten invariants of log Calabi–Yau surfaces. We show that the q–refined 2–dimensional Kontsevich–Soibelman scattering diagrams compute, after the change of variables q = ei, generating series of certain higher-genus log Gromov–Witten invariants of log Calabi–Yau surfaces.

This result provides a mathematically rigorous realization of the physical derivation of the refined wall-crossing formula from topological string theory proposed by Cecotti and Vafa and, in particular, can be viewed as a nontrivial mathematical check of the connection suggested by Witten between higher-genus open A–model and Chern–Simons theory.

We also prove some new BPS integrality results and propose some other BPS integrality conjectures.

DOI : 10.2140/gt.2020.24.1297
Classification : 14N35
Keywords: scattering diagrams, quantum tori, Gromov–Witten invariants

Bousseau, Pierrick 1

1 Department of Mathematics, Imperial College London, London, United Kingdom, Institute for Theoretical Studies, ETH Zürich, Zürich, Switzerland
@article{GT_2020_24_3_a4,
     author = {Bousseau, Pierrick},
     title = {The quantum tropical vertex},
     journal = {Geometry & topology},
     pages = {1297--1379},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2020},
     doi = {10.2140/gt.2020.24.1297},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1297/}
}
TY  - JOUR
AU  - Bousseau, Pierrick
TI  - The quantum tropical vertex
JO  - Geometry & topology
PY  - 2020
SP  - 1297
EP  - 1379
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1297/
DO  - 10.2140/gt.2020.24.1297
ID  - GT_2020_24_3_a4
ER  - 
%0 Journal Article
%A Bousseau, Pierrick
%T The quantum tropical vertex
%J Geometry & topology
%D 2020
%P 1297-1379
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1297/
%R 10.2140/gt.2020.24.1297
%F GT_2020_24_3_a4
Bousseau, Pierrick. The quantum tropical vertex. Geometry & topology, Tome 24 (2020) no. 3, pp. 1297-1379. doi : 10.2140/gt.2020.24.1297. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1297/

[1] D Abramovich, Q Chen, Stable logarithmic maps to Deligne–Faltings pairs, II, Asian J. Math. 18 (2014) 465 | DOI

[2] D Abramovich, Q Chen, M Gross, B Siebert, Decomposition of degenerate Gromov–Witten invariants, preprint (2017)

[3] D Abramovich, Q Chen, M Gross, B Siebert, Punctured logarithmic curves, preprint (2019)

[4] D Abramovich, T Graber, A Vistoli, Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math. 130 (2008) 1337 | DOI

[5] D Abramovich, S Marcus, J Wise, Comparison theorems for Gromov–Witten invariants of smooth pairs and of degenerations, Ann. Inst. Fourier (Grenoble) 64 (2014) 1611 | DOI

[6] D Abramovich, J Wise, Birational invariance in logarithmic Gromov–Witten theory, Compos. Math. 154 (2018) 595 | DOI

[7] A Beauville, Sur la cohomologie de certains espaces de modules de fibrés vectoriels, from: "Geometry and analysis" (editor S Ramanan), Tata Inst. Fund. Res., Bombay (1995) 37

[8] F Block, L Göttsche, Refined curve counting with tropical geometry, Compos. Math. 152 (2016) 115 | DOI

[9] P Boalch, Hyperkähler manifolds and nonabelian Hodge theory of (irregular) curves, preprint (2012)

[10] P Bousseau, Tropical refined curve counting from higher genera and lambda classes, Invent. Math. 215 (2019) 1 | DOI

[11] P Bousseau, Quantum mirrors of log Calabi–Yau surfaces and higher-genus curve counting, Compos. Math. 156 (2020) 360 | DOI

[12] J Bryan, T Graber, R Pandharipande, The orbifold quantum cohomology of C2∕Z3 and Hurwitz–Hodge integrals, J. Algebraic Geom. 17 (2008) 1 | DOI

[13] J Bryan, R Pandharipande, Curves in Calabi–Yau threefolds and topological quantum field theory, Duke Math. J. 126 (2005) 369 | DOI

[14] S Cecotti, A Neitzke, C Vafa, R–twisting and 4d/2d correspondences, preprint (2010)

[15] S Cecotti, C Vafa, BPS wall crossing and topological strings, preprint (2009)

[16] Q Chen, Stable logarithmic maps to Deligne–Faltings pairs, I, Ann. of Math. 180 (2014) 455 | DOI

[17] W Chen, Y Ruan, Orbifold Gromov–Witten theory, from: "Orbifolds in mathematics and physics" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 25 | DOI

[18] G Ellingsrud, S A Strømme, Towards the Chow ring of the Hilbert scheme of P2, J. Reine Angew. Math. 441 (1993) 33 | DOI

[19] C Faber, R Pandharipande, Hodge integrals and Gromov–Witten theory, Invent. Math. 139 (2000) 173 | DOI

[20] L D Faddeev, R M Kashaev, Quantum dilogarithm, Modern Phys. Lett. A 9 (1994) 427 | DOI

[21] S A Filippini, J Stoppa, Block–Göttsche invariants from wall-crossing, Compos. Math. 151 (2015) 1543 | DOI

[22] K Fukaya, Multivalued Morse theory, asymptotic analysis and mirror symmetry, from: "Graphs and patterns in mathematics and theoretical physics" (editors M Lyubich, L Takhtajan), Proc. Sympos. Pure Math. 73, Amer. Math. Soc. (2005) 205 | DOI

[23] W Fulton, Intersection theory, 2, Springer (1998) | DOI

[24] M Van Garrel, T Graber, H Ruddat, Local Gromov–Witten invariants are log invariants, Adv. Math. 350 (2019) 860 | DOI

[25] R Gopakumar, C Vafa, M–theory and topological strings, I, preprint (1998)

[26] R Gopakumar, C Vafa, M–theory and topological strings, II, preprint (1998)

[27] T Graber, R Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999) 487 | DOI

[28] M Gross, P Hacking, S Keel, Mirror symmetry for log Calabi–Yau surfaces, I, Publ. Math. Inst. Hautes Études Sci. 122 (2015) 65 | DOI

[29] M Gross, P Hacking, S Keel, M Kontsevich, Canonical bases for cluster algebras, J. Amer. Math. Soc. 31 (2018) 497 | DOI

[30] M Gross, R Pandharipande, Quivers, curves, and the tropical vertex, Port. Math. 67 (2010) 211 | DOI

[31] M Gross, R Pandharipande, B Siebert, The tropical vertex, Duke Math. J. 153 (2010) 297 | DOI

[32] M Gross, B Siebert, From real affine geometry to complex geometry, Ann. of Math. 174 (2011) 1301 | DOI

[33] M Gross, B Siebert, Logarithmic Gromov–Witten invariants, J. Amer. Math. Soc. 26 (2013) 451 | DOI

[34] V Iacovino, Kontsevich–Soibelman wall crossing formula and holomorphic disks, preprint (2017)

[35] I Itenberg, G Mikhalkin, On Block–Göttsche multiplicities for planar tropical curves, Int. Math. Res. Not. 2013 (2013) 5289 | DOI

[36] P Johnson, R Pandharipande, H H Tseng, Abelian Hurwitz–Hodge integrals, Michigan Math. J. 60 (2011) 171 | DOI

[37] D Joyce, Y Song, A theory of generalized Donaldson–Thomas invariants, 1020, Amer. Math. Soc. (2012) | DOI

[38] K Kato, Logarithmic structures of Fontaine–Illusie, from: "Algebraic analysis, geometry, and number theory" (editor J I Igusa), Johns Hopkins Univ. Press, Baltimore, MD (1989) 191

[39] S Katz, Genus zero Gopakumar–Vafa invariants of contractible curves, J. Differential Geom. 79 (2008) 185 | DOI

[40] B Kim, H Lho, H Ruddat, The degeneration formula for stable log maps, preprint (2018)

[41] Y Konishi, Integrality of Gopakumar–Vafa invariants of toric Calabi–Yau threefolds, Publ. Res. Inst. Math. Sci. 42 (2006) 605 | DOI

[42] M Kontsevich, Y Soibelman, Affine structures and non–Archimedean analytic spaces, from: "The unity of mathematics" (editors P Etingof, V Retakh, I M Singer), Progr. Math. 244, Birkhäuser, Boston (2006) 321 | DOI

[43] M Kontsevich, Y Soibelman, Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, preprint (2008)

[44] M Kontsevich, Y Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants, Commun. Number Theory Phys. 5 (2011) 231 | DOI

[45] M Kontsevich, Y Soibelman, Wall-crossing structures in Donaldson–Thomas invariants, integrable systems and mirror symmetry, from: "Homological mirror symmetry and tropical geometry" (editors R Castano-Bernard, F Catanese, M Kontsevich, T Pantev, Y Soibelman, I Zharkov), Lect. Notes Unione Mat. Ital. 15, Springer (2014) 197 | DOI

[46] P Kucharski, M Reineke, M Stošić, P Sułkowski, BPS states, knots, and quivers, Phys. Rev. D 96 (2017) | DOI

[47] P Kucharski, M Reineke, M Stošić, P Sułkowski, Knots-quivers correspondence, preprint (2017)

[48] J Li, Y Song, Open string instantons and relative stable morphisms, from: "The interaction of finite-type and Gromov–Witten invariants" (editors D Auckly, J Bryan), Geom. Topol. Monogr. 8, Geom. Topol. Publ., Coventry (2006) 49 | DOI

[49] Y S Lin, Correspondence theorem between holomorphic discs and tropical discs on K3 surfaces, preprint (2017)

[50] T Mandel, Scattering diagrams, theta functions, and refined tropical curve counts, preprint (2015)

[51] J Manschot, B Pioline, A Sen, On the Coulomb and Higgs branch formulae for multi-centered black holes and quiver invariants, J. High Energy Phys. (2013) | DOI

[52] E Markman, Integral generators for the cohomology ring of moduli spaces of sheaves over Poisson surfaces, Adv. Math. 208 (2007) 622 | DOI

[53] D Maulik, N Nekrasov, A Okounkov, R Pandharipande, Gromov–Witten theory and Donaldson–Thomas theory, I, Compos. Math. 142 (2006) 1263 | DOI

[54] D Maulik, N Nekrasov, A Okounkov, R Pandharipande, Gromov–Witten theory and Donaldson–Thomas theory, II, Compos. Math. 142 (2006) 1286 | DOI

[55] D Maulik, R Pandharipande, R P Thomas, Curves on K3 surfaces and modular forms, J. Topol. 3 (2010) 937 | DOI

[56] S Meinhardt, M Reineke, Donaldson–Thomas invariants versus intersection cohomology of quiver moduli, J. Reine Angew. Math. 754 (2019) 143 | DOI

[57] G Mikhalkin, Enumerative tropical algebraic geometry in R2, J. Amer. Math. Soc. 18 (2005) 313 | DOI

[58] D Mumford, Towards an enumerative geometry of the moduli space of curves, from: "Arithmetic and geometry, II" (editors M Artin, J Tate), Progr. Math. 36, Birkhäuser, Boston (1983) 271 | DOI

[59] A Neitzke, Comparing signs in wall-crossing formulas, expository note (2016)

[60] T Nishinou, B Siebert, Toric degenerations of toric varieties and tropical curves, Duke Math. J. 135 (2006) 1 | DOI

[61] H Ooguri, C Vafa, Knot invariants and topological strings, Nuclear Phys. B 577 (2000) 419 | DOI

[62] R Pandharipande, A Pixton, Descendent theory for stable pairs on toric 3–folds, J. Math. Soc. Japan 65 (2013) 1337 | DOI

[63] M Reineke, Poisson automorphisms and quiver moduli, J. Inst. Math. Jussieu 9 (2010) 653 | DOI

[64] M Reineke, Cohomology of quiver moduli, functional equations, and integrality of Donaldson–Thomas type invariants, Compos. Math. 147 (2011) 943 | DOI

[65] M Reineke, J Stoppa, T Weist, MPS degeneration formula for quiver moduli and refined GW/Kronecker correspondence, Geom. Topol. 16 (2012) 2097 | DOI

[66] M Reineke, T Weist, Refined GW/Kronecker correspondence, Math. Ann. 355 (2013) 17 | DOI

[67] Y Soibelman, On non-commutative analytic spaces over non-Archimedean fields, from: "Homological mirror symmetry" (editors A Kapustin, M Kreuzer, K G Schlesinger), Lecture Notes in Phys. 757, Springer (2009) 221 | DOI

[68] A Strominger, S T Yau, E Zaslow, Mirror symmetry is T–duality, Nuclear Phys. B 479 (1996) 243 | DOI

[69] Y Toda, Stability conditions and curve counting invariants on Calabi–Yau 3–folds, Kyoto J. Math. 52 (2012) 1 | DOI

[70] E Witten, Chern–Simons gauge theory as a string theory, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser, Basel (1995) 637 | DOI

[71] D Zagier, The dilogarithm function, from: "Frontiers in number theory, physics, and geometry, II" (editors P Cartier, B Julia, P Moussa, P Vanhove), Springer (2007) 3 | DOI

[72] E Zaslow, Wavefunctions for a class of branes in three-space, preprint (2018)

Cité par Sources :