Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Gross, Pandharipande and Siebert have shown that the –dimensional Kontsevich–Soibelman scattering diagrams compute certain genus-zero log Gromov–Witten invariants of log Calabi–Yau surfaces. We show that the –refined –dimensional Kontsevich–Soibelman scattering diagrams compute, after the change of variables , generating series of certain higher-genus log Gromov–Witten invariants of log Calabi–Yau surfaces.
This result provides a mathematically rigorous realization of the physical derivation of the refined wall-crossing formula from topological string theory proposed by Cecotti and Vafa and, in particular, can be viewed as a nontrivial mathematical check of the connection suggested by Witten between higher-genus open A–model and Chern–Simons theory.
We also prove some new BPS integrality results and propose some other BPS integrality conjectures.
Bousseau, Pierrick 1
@article{GT_2020_24_3_a4, author = {Bousseau, Pierrick}, title = {The quantum tropical vertex}, journal = {Geometry & topology}, pages = {1297--1379}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2020}, doi = {10.2140/gt.2020.24.1297}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1297/} }
Bousseau, Pierrick. The quantum tropical vertex. Geometry & topology, Tome 24 (2020) no. 3, pp. 1297-1379. doi : 10.2140/gt.2020.24.1297. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1297/
[1] Stable logarithmic maps to Deligne–Faltings pairs, II, Asian J. Math. 18 (2014) 465 | DOI
, ,[2] Decomposition of degenerate Gromov–Witten invariants, preprint (2017)
, , , ,[3] Punctured logarithmic curves, preprint (2019)
, , , ,[4] Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math. 130 (2008) 1337 | DOI
, , ,[5] Comparison theorems for Gromov–Witten invariants of smooth pairs and of degenerations, Ann. Inst. Fourier (Grenoble) 64 (2014) 1611 | DOI
, , ,[6] Birational invariance in logarithmic Gromov–Witten theory, Compos. Math. 154 (2018) 595 | DOI
, ,[7] Sur la cohomologie de certains espaces de modules de fibrés vectoriels, from: "Geometry and analysis" (editor S Ramanan), Tata Inst. Fund. Res., Bombay (1995) 37
,[8] Refined curve counting with tropical geometry, Compos. Math. 152 (2016) 115 | DOI
, ,[9] Hyperkähler manifolds and nonabelian Hodge theory of (irregular) curves, preprint (2012)
,[10] Tropical refined curve counting from higher genera and lambda classes, Invent. Math. 215 (2019) 1 | DOI
,[11] Quantum mirrors of log Calabi–Yau surfaces and higher-genus curve counting, Compos. Math. 156 (2020) 360 | DOI
,[12] The orbifold quantum cohomology of C2∕Z3 and Hurwitz–Hodge integrals, J. Algebraic Geom. 17 (2008) 1 | DOI
, , ,[13] Curves in Calabi–Yau threefolds and topological quantum field theory, Duke Math. J. 126 (2005) 369 | DOI
, ,[14] R–twisting and 4d/2d correspondences, preprint (2010)
, , ,[15] BPS wall crossing and topological strings, preprint (2009)
, ,[16] Stable logarithmic maps to Deligne–Faltings pairs, I, Ann. of Math. 180 (2014) 455 | DOI
,[17] Orbifold Gromov–Witten theory, from: "Orbifolds in mathematics and physics" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 25 | DOI
, ,[18] Towards the Chow ring of the Hilbert scheme of P2, J. Reine Angew. Math. 441 (1993) 33 | DOI
, ,[19] Hodge integrals and Gromov–Witten theory, Invent. Math. 139 (2000) 173 | DOI
, ,[20] Quantum dilogarithm, Modern Phys. Lett. A 9 (1994) 427 | DOI
, ,[21] Block–Göttsche invariants from wall-crossing, Compos. Math. 151 (2015) 1543 | DOI
, ,[22] Multivalued Morse theory, asymptotic analysis and mirror symmetry, from: "Graphs and patterns in mathematics and theoretical physics" (editors M Lyubich, L Takhtajan), Proc. Sympos. Pure Math. 73, Amer. Math. Soc. (2005) 205 | DOI
,[23] Intersection theory, 2, Springer (1998) | DOI
,[24] Local Gromov–Witten invariants are log invariants, Adv. Math. 350 (2019) 860 | DOI
, , ,[25] M–theory and topological strings, I, preprint (1998)
, ,[26] M–theory and topological strings, II, preprint (1998)
, ,[27] Localization of virtual classes, Invent. Math. 135 (1999) 487 | DOI
, ,[28] Mirror symmetry for log Calabi–Yau surfaces, I, Publ. Math. Inst. Hautes Études Sci. 122 (2015) 65 | DOI
, , ,[29] Canonical bases for cluster algebras, J. Amer. Math. Soc. 31 (2018) 497 | DOI
, , , ,[30] Quivers, curves, and the tropical vertex, Port. Math. 67 (2010) 211 | DOI
, ,[31] The tropical vertex, Duke Math. J. 153 (2010) 297 | DOI
, , ,[32] From real affine geometry to complex geometry, Ann. of Math. 174 (2011) 1301 | DOI
, ,[33] Logarithmic Gromov–Witten invariants, J. Amer. Math. Soc. 26 (2013) 451 | DOI
, ,[34] Kontsevich–Soibelman wall crossing formula and holomorphic disks, preprint (2017)
,[35] On Block–Göttsche multiplicities for planar tropical curves, Int. Math. Res. Not. 2013 (2013) 5289 | DOI
, ,[36] Abelian Hurwitz–Hodge integrals, Michigan Math. J. 60 (2011) 171 | DOI
, , ,[37] A theory of generalized Donaldson–Thomas invariants, 1020, Amer. Math. Soc. (2012) | DOI
, ,[38] Logarithmic structures of Fontaine–Illusie, from: "Algebraic analysis, geometry, and number theory" (editor J I Igusa), Johns Hopkins Univ. Press, Baltimore, MD (1989) 191
,[39] Genus zero Gopakumar–Vafa invariants of contractible curves, J. Differential Geom. 79 (2008) 185 | DOI
,[40] The degeneration formula for stable log maps, preprint (2018)
, , ,[41] Integrality of Gopakumar–Vafa invariants of toric Calabi–Yau threefolds, Publ. Res. Inst. Math. Sci. 42 (2006) 605 | DOI
,[42] Affine structures and non–Archimedean analytic spaces, from: "The unity of mathematics" (editors P Etingof, V Retakh, I M Singer), Progr. Math. 244, Birkhäuser, Boston (2006) 321 | DOI
, ,[43] Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, preprint (2008)
, ,[44] Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants, Commun. Number Theory Phys. 5 (2011) 231 | DOI
, ,[45] Wall-crossing structures in Donaldson–Thomas invariants, integrable systems and mirror symmetry, from: "Homological mirror symmetry and tropical geometry" (editors R Castano-Bernard, F Catanese, M Kontsevich, T Pantev, Y Soibelman, I Zharkov), Lect. Notes Unione Mat. Ital. 15, Springer (2014) 197 | DOI
, ,[46] BPS states, knots, and quivers, Phys. Rev. D 96 (2017) | DOI
, , , ,[47] Knots-quivers correspondence, preprint (2017)
, , , ,[48] Open string instantons and relative stable morphisms, from: "The interaction of finite-type and Gromov–Witten invariants" (editors D Auckly, J Bryan), Geom. Topol. Monogr. 8, Geom. Topol. Publ., Coventry (2006) 49 | DOI
, ,[49] Correspondence theorem between holomorphic discs and tropical discs on K3 surfaces, preprint (2017)
,[50] Scattering diagrams, theta functions, and refined tropical curve counts, preprint (2015)
,[51] On the Coulomb and Higgs branch formulae for multi-centered black holes and quiver invariants, J. High Energy Phys. (2013) | DOI
, , ,[52] Integral generators for the cohomology ring of moduli spaces of sheaves over Poisson surfaces, Adv. Math. 208 (2007) 622 | DOI
,[53] Gromov–Witten theory and Donaldson–Thomas theory, I, Compos. Math. 142 (2006) 1263 | DOI
, , , ,[54] Gromov–Witten theory and Donaldson–Thomas theory, II, Compos. Math. 142 (2006) 1286 | DOI
, , , ,[55] Curves on K3 surfaces and modular forms, J. Topol. 3 (2010) 937 | DOI
, , ,[56] Donaldson–Thomas invariants versus intersection cohomology of quiver moduli, J. Reine Angew. Math. 754 (2019) 143 | DOI
, ,[57] Enumerative tropical algebraic geometry in R2, J. Amer. Math. Soc. 18 (2005) 313 | DOI
,[58] Towards an enumerative geometry of the moduli space of curves, from: "Arithmetic and geometry, II" (editors M Artin, J Tate), Progr. Math. 36, Birkhäuser, Boston (1983) 271 | DOI
,[59] Comparing signs in wall-crossing formulas, expository note (2016)
,[60] Toric degenerations of toric varieties and tropical curves, Duke Math. J. 135 (2006) 1 | DOI
, ,[61] Knot invariants and topological strings, Nuclear Phys. B 577 (2000) 419 | DOI
, ,[62] Descendent theory for stable pairs on toric 3–folds, J. Math. Soc. Japan 65 (2013) 1337 | DOI
, ,[63] Poisson automorphisms and quiver moduli, J. Inst. Math. Jussieu 9 (2010) 653 | DOI
,[64] Cohomology of quiver moduli, functional equations, and integrality of Donaldson–Thomas type invariants, Compos. Math. 147 (2011) 943 | DOI
,[65] MPS degeneration formula for quiver moduli and refined GW/Kronecker correspondence, Geom. Topol. 16 (2012) 2097 | DOI
, , ,[66] Refined GW/Kronecker correspondence, Math. Ann. 355 (2013) 17 | DOI
, ,[67] On non-commutative analytic spaces over non-Archimedean fields, from: "Homological mirror symmetry" (editors A Kapustin, M Kreuzer, K G Schlesinger), Lecture Notes in Phys. 757, Springer (2009) 221 | DOI
,[68] Mirror symmetry is T–duality, Nuclear Phys. B 479 (1996) 243 | DOI
, , ,[69] Stability conditions and curve counting invariants on Calabi–Yau 3–folds, Kyoto J. Math. 52 (2012) 1 | DOI
,[70] Chern–Simons gauge theory as a string theory, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser, Basel (1995) 637 | DOI
,[71] The dilogarithm function, from: "Frontiers in number theory, physics, and geometry, II" (editors P Cartier, B Julia, P Moussa, P Vanhove), Springer (2007) 3 | DOI
,[72] Wavefunctions for a class of branes in three-space, preprint (2018)
,Cité par Sources :