Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We develop a parabolic pluripotential theory on compact Kähler manifolds, defining and studying weak solutions to degenerate parabolic complex Monge–Ampère equations. We provide a parabolic analogue of the celebrated Bedford–Taylor theory and apply it to the study of the Kähler–Ricci flow on varieties with log terminal singularities.
Guedj, Vincent 1 ; Lu, Chinh H 2 ; Zeriahi, Ahmed 1
@article{GT_2020_24_3_a3, author = {Guedj, Vincent and Lu, Chinh H and Zeriahi, Ahmed}, title = {Pluripotential {K\"ahler{\textendash}Ricci} flows}, journal = {Geometry & topology}, pages = {1225--1296}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2020}, doi = {10.2140/gt.2020.24.1225}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1225/} }
TY - JOUR AU - Guedj, Vincent AU - Lu, Chinh H AU - Zeriahi, Ahmed TI - Pluripotential Kähler–Ricci flows JO - Geometry & topology PY - 2020 SP - 1225 EP - 1296 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1225/ DO - 10.2140/gt.2020.24.1225 ID - GT_2020_24_3_a3 ER -
Guedj, Vincent; Lu, Chinh H; Zeriahi, Ahmed. Pluripotential Kähler–Ricci flows. Geometry & topology, Tome 24 (2020) no. 3, pp. 1225-1296. doi : 10.2140/gt.2020.24.1225. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1225/
[1] The Dirichlet problem for a complex Monge–Ampère equation, Invent. Math. 37 (1976) 1 | DOI
, ,[2] A new capacity for plurisubharmonic functions, Acta Math. 149 (1982) 1 | DOI
, ,[3] Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties, J. Reine Angew. Math. 751 (2019) 27 | DOI
, , , , ,[4] A variational approach to complex Monge–Ampère equations, Publ. Math. Inst. Hautes Études Sci. 117 (2013) 179 | DOI
, , , ,[5] Deformation of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds, Invent. Math. 81 (1985) 359 | DOI
,[6] Maximal subextensions of plurisubharmonic functions, Ann. Fac. Sci. Toulouse Math. 20 (2011) 101 | DOI
, , ,[7] The twisted Kähler–Ricci flow, J. Reine Angew. Math. 716 (2016) 179 | DOI
, ,[8] Kähler currents and null loci, Invent. Math. 202 (2015) 1167 | DOI
, ,[9] Uniqueness and short time regularity of the weak Kähler–Ricci flow, Adv. Math. 305 (2017) 953 | DOI
, ,[10] An inequality for mixed Monge–Ampère measures, Math. Z. 262 (2009) 1 | DOI
,[11] A priori L∞–estimates for degenerate complex Monge–Ampère equations, Int. Math. Res. Not. 2008 (2008) | DOI
, , ,[12] Singular Kähler–Einstein metrics, J. Amer. Math. Soc. 22 (2009) 607 | DOI
, , ,[13] Viscosity solutions to degenerate complex Monge–Ampère equations, Comm. Pure Appl. Math. 64 (2011) 1059 | DOI
, , ,[14] Weak solutions to degenerate complex Monge–Ampère flows, II, Adv. Math. 293 (2016) 37 | DOI
, , ,[15] Convergence of weak Kähler–Ricci flows on minimal models of positive Kodaira dimension, Comm. Math. Phys. 357 (2018) 1179 | DOI
, , ,[16] Stability of solutions to complex Monge–Ampère flows, Ann. Inst. Fourier (Grenoble) 68 (2018) 2819 | DOI
, , ,[17] Pluripotential solutions versus viscosity solutions to complex Monge–Ampère flows, preprint (2019)
, , ,[18] Weak subsolutions to complex Monge–Ampère equations, J. Math. Soc. Japan 71 (2019) 727 | DOI
, , ,[19] The pluripotential Cauchy–Dirichlet problem for complex Monge–Ampère flows, preprint (2018)
, , ,[20] Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (2005) 607 | DOI
, ,[21] Stability of solutions to complex Monge–Ampère equations in big cohomology classes, Math. Res. Lett. 19 (2012) 1025 | DOI
, ,[22] Degenerate complex Monge–Ampère equations, 26, Eur. Math. Soc. (2017) | DOI
, ,[23] Regularizing properties of the twisted Kähler–Ricci flow, J. Reine Angew. Math. 729 (2017) 275 | DOI
, ,[24] Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982) 255 | DOI
,[25] Birational geometry of algebraic varieties, 134, Cambridge Univ. Press (1998) | DOI
, ,[26] Some sufficient conditions for solvability of the Dirichlet problem for the complex Monge–Ampère operator, Ann. Polon. Math. 65 (1996) 11 | DOI
,[27] The complex Monge–Ampère equation, Acta Math. 180 (1998) 69 | DOI
,[28] The Monge–Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52 (2003) 667 | DOI
,[29] The Kähler–Ricci flow with positive bisectional curvature, Invent. Math. 173 (2008) 651 | DOI
, , , ,[30] The Kähler–Ricci flow and the ∂ operator on vector fields, J. Differential Geom. 81 (2009) 631 | DOI
, , , ,[31] The Kähler–Ricci flow on projective bundles, Int. Math. Res. Not. 2013 (2013) 243 | DOI
, , ,[32] Canonical measures and Kähler–Ricci flow, J. Amer. Math. Soc. 25 (2012) 303 | DOI
, ,[33] The Kähler–Ricci flow through singularities, Invent. Math. 207 (2017) 519 | DOI
, ,[34] An introduction to the Kähler–Ricci flow, from: "An introduction to the Kähler–Ricci flow" (editors S Boucksom, P Eyssidieux, V Guedj), Lecture Notes in Math. 2086, Springer (2013) 89 | DOI
, ,[35] On the Kähler–Ricci flow on projective manifolds of general type, Chinese Ann. Math. Ser. B 27 (2006) 179 | DOI
, ,[36] Regularizing properties of complex Monge–Ampère flows, J. Funct. Anal. 272 (2017) 2058 | DOI
,[37] KAWA lecture notes on the Kähler–Ricci flow, Ann. Fac. Sci. Toulouse Math. 27 (2018) 285 | DOI
,[38] Infinite-time singularities of the Kähler–Ricci flow, Geom. Topol. 19 (2015) 2925 | DOI
, ,[39] Existence and degeneration of Kähler–Einstein metrics on minimal algebraic varieties of general type, Math. Ann. 281 (1988) 123 | DOI
,[40] On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I, Comm. Pure Appl. Math. 31 (1978) 339 | DOI
,Cité par Sources :