Euler characteristics of Gothic Teichmüller curves
Geometry & topology, Tome 24 (2020) no. 3, pp. 1149-1210.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We compute the Euler characteristics of the recently discovered series of Gothic Teichmüller curves. The main tool is the construction of “Gothic” Hilbert modular forms vanishing at the images of these Teichmüller curves.

Contrary to all previously known examples, the Euler characteristic is not proportional to the Euler characteristic of the ambient Hilbert modular surfaces. This results in interesting “varying” phenomena for Lyapunov exponents.

DOI : 10.2140/gt.2020.24.1149
Classification : 32G15, 11F27, 11F46, 37D40
Keywords: Teichmüller curves, Hilbert modular surfaces, theta functions, Lyapunov exponents

Möller, Martin 1 ; Torres-Teigell, David 1

1 Institut für Mathematik, Goethe–Universität Frankfurt, Frankfurt am Main, Germany
@article{GT_2020_24_3_a1,
     author = {M\"oller, Martin and Torres-Teigell, David},
     title = {Euler characteristics of {Gothic} {Teichm\"uller} curves},
     journal = {Geometry & topology},
     pages = {1149--1210},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2020},
     doi = {10.2140/gt.2020.24.1149},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1149/}
}
TY  - JOUR
AU  - Möller, Martin
AU  - Torres-Teigell, David
TI  - Euler characteristics of Gothic Teichmüller curves
JO  - Geometry & topology
PY  - 2020
SP  - 1149
EP  - 1210
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1149/
DO  - 10.2140/gt.2020.24.1149
ID  - GT_2020_24_3_a1
ER  - 
%0 Journal Article
%A Möller, Martin
%A Torres-Teigell, David
%T Euler characteristics of Gothic Teichmüller curves
%J Geometry & topology
%D 2020
%P 1149-1210
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1149/
%R 10.2140/gt.2020.24.1149
%F GT_2020_24_3_a1
Möller, Martin; Torres-Teigell, David. Euler characteristics of Gothic Teichmüller curves. Geometry & topology, Tome 24 (2020) no. 3, pp. 1149-1210. doi : 10.2140/gt.2020.24.1149. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1149/

[1] M Bainbridge, Euler characteristics of Teichmüller curves in genus two, Geom. Topol. 11 (2007) 1887 | DOI

[2] H Bass, Torsion free and projective modules, Trans. Amer. Math. Soc. 102 (1962) 319 | DOI

[3] C Birkenhake, H Lange, Complex abelian varieties, 302, Springer (2004) | DOI

[4] C Bonatti, A Eskin, A Wilkinson, Projective cocycles over SL(2, R)–actions : measures invariant under the upper triangular group, preprint (2017)

[5] H Cohen, A course in computational algebraic number theory, 138, Springer (1993) | DOI

[6] A Eskin, S Filip, A Wright, The algebraic hull of the Kontsevich–Zorich cocycle, Ann. of Math. 188 (2018) 281 | DOI

[7] A Eskin, M Kontsevich, A Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, Publ. Math. Inst. Hautes Études Sci. 120 (2014) 207 | DOI

[8] A. Eskin, C. Mcmullen, R. Mukamel, A. Wright, Billiards, quadrilaterals and moduli spaces, J. Amer. Math. Soc. (2020) | DOI

[9] A Eskin, M Mirzakhani, A Mohammadi, Isolation, equidistribution, and orbit closures for the SL(2, R) action on moduli space, Ann. of Math. 182 (2015) 673 | DOI

[10] G Van Der Geer, Hilbert modular surfaces, 16, Springer (1988) | DOI

[11] F E P Hirzebruch, Hilbert modular surfaces, Enseign. Math. 19 (1973) 183

[12] F Hirzebruch, G Van Der Geer, Lectures on Hilbert modular surfaces, 77, Presses de l’Université de Montréal (1981) 193

[13] W P Hooper, Grid graphs and lattice surfaces, Int. Math. Res. Not. 2013 (2013) 2657 | DOI

[14] H Lange, S Recillas, Prym varieties of pairs of coverings, Adv. Geom. 4 (2004) 373 | DOI

[15] C T Mcmullen, Foliations of Hilbert modular surfaces, Amer. J. Math. 129 (2007) 183 | DOI

[16] C T Mcmullen, R E Mukamel, A Wright, Cubic curves and totally geodesic subvarieties of moduli space, Ann. of Math. 185 (2017) 957 | DOI

[17] M Möller, Variations of Hodge structures of a Teichmüller curve, J. Amer. Math. Soc. 19 (2006) 327 | DOI

[18] M Möller, Teichmüller curves, mainly from the viewpoint of algebraic geometry, from: "Moduli spaces of Riemann surfaces" (editors B Farb, R Hain, E Looijenga), IAS/Park City Math. Ser. 20, Amer. Math. Soc. (2013) 267

[19] M Möller, Prym covers, theta functions and Kobayashi curves in Hilbert modular surfaces, Amer. J. Math. 136 (2014) 995 | DOI

[20] M Möller, Geometry of Teichmüller curves, from: "Proceedings of the International Congress of Mathematicians" (editors B Sirakov, P N d Souza, M Viana), World Sci. (2018) 2017

[21] M Möller, D Zagier, Modular embeddings of Teichmüller curves, Compos. Math. 152 (2016) 2269 | DOI

[22] R E Mukamel, Fundamental domains and generators for lattice Veech groups, Comment. Math. Helv. 92 (2017) 57 | DOI

[23] C L Siegel, The volume of the fundamental domain for some infinite groups, Trans. Amer. Math. Soc. 39 (1936) 209 | DOI

[24] C C Ward, Calculation of Fuchsian groups associated to billiards in a rational triangle, Ergodic Theory Dynam. Systems 18 (1998) 1019 | DOI

[25] A Wright, Schwarz triangle mappings and Teichmüller curves : the Veech–Ward–Bouw–Möller curves, Geom. Funct. Anal. 23 (2013) 776 | DOI

[26] A Wright, Cylinder deformations in orbit closures of translation surfaces, Geom. Topol. 19 (2015) 413 | DOI

[27] D Zagier, On the values at negative integers of the zeta-function of a real quadratic field, Enseign. Math. 22 (1976) 55

[28] A Zorich, Flat surfaces, from: "Frontiers in number theory, physics, and geometry, I" (editors P Cartier, B Julia, P Moussa, P Vanhove), Springer (2006) 437

Cité par Sources :