Hyperbolicity and cubulability are preserved under elementary equivalence
Geometry & topology, Tome 24 (2020) no. 3, pp. 1075-1147.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The following properties are preserved under elementary equivalence, among finitely generated groups: being hyperbolic (possibly with torsion), being hyperbolic and cubulable, and being a subgroup of a hyperbolic group. In other words, if a finitely generated group G has the same first-order theory as a group possessing one of the previous properties, then G enjoys that property as well.

DOI : 10.2140/gt.2020.24.1075
Classification : 20F67, 03C65
Keywords: hyperbolic groups, cubulable groups, model theory, elementary equivalence, first-order logic

André, Simon 1

1 Université de Rennes 1, CNRS, IRMAR-UMR 6625, Rennes, France, Department of Mathematics, Vanderbilt University, Nashville, TN, United States
@article{GT_2020_24_3_a0,
     author = {Andr\'e, Simon},
     title = {Hyperbolicity and cubulability are preserved under elementary equivalence},
     journal = {Geometry & topology},
     pages = {1075--1147},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2020},
     doi = {10.2140/gt.2020.24.1075},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1075/}
}
TY  - JOUR
AU  - André, Simon
TI  - Hyperbolicity and cubulability are preserved under elementary equivalence
JO  - Geometry & topology
PY  - 2020
SP  - 1075
EP  - 1147
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1075/
DO  - 10.2140/gt.2020.24.1075
ID  - GT_2020_24_3_a0
ER  - 
%0 Journal Article
%A André, Simon
%T Hyperbolicity and cubulability are preserved under elementary equivalence
%J Geometry & topology
%D 2020
%P 1075-1147
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1075/
%R 10.2140/gt.2020.24.1075
%F GT_2020_24_3_a0
André, Simon. Hyperbolicity and cubulability are preserved under elementary equivalence. Geometry & topology, Tome 24 (2020) no. 3, pp. 1075-1147. doi : 10.2140/gt.2020.24.1075. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1075/

[1] I Agol, The virtual Haken conjecture, Doc. Math. 18 (2013) 1045 | DOI

[2] B Baumslag, Residually free groups, Proc. London Math. Soc. 17 (1967) 402 | DOI

[3] G Baumslag, On generalised free products, Math. Z. 78 (1962) 423 | DOI

[4] M Bestvina, M Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85 | DOI

[5] B H Bowditch, Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1998) 145 | DOI

[6] T Delzant, L’image d’un groupe dans un groupe hyperbolique, Comment. Math. Helv. 70 (1995) 267 | DOI

[7] V Guirardel, G Levitt, JSJ decompositions of groups, 395 (2017) | DOI

[8] F Haglund, Finite index subgroups of graph products, Geom. Dedicata 135 (2008) 167 | DOI

[9] O Kharlampovich, A Myasnikov, Irreducible affine varieties over a free group, I : Irreducibility of quadratic equations and Nullstellensatz, J. Algebra 200 (1998) 472 | DOI

[10] O Kharlampovich, A Myasnikov, Elementary theory of free non-abelian groups, J. Algebra 302 (2006) 451 | DOI

[11] P A Linnell, On accessibility of groups, J. Pure Appl. Algebra 30 (1983) 39 | DOI

[12] D Marker, Model theory: an introduction, 217, Springer (2002) | DOI

[13] J P Mccammond, D T Wise, Coherence, local quasiconvexity, and the perimeter of 2–complexes, Geom. Funct. Anal. 15 (2005) 859 | DOI

[14] J P Mccammond, D T Wise, Locally quasiconvex small-cancellation groups, Trans. Amer. Math. Soc. 360 (2008) 237 | DOI

[15] C Moioli, Graphes de groupes et groupes co-hopfiens, PhD thesis, Université Paul Sabatier – Toulouse III (2013)

[16] J W Morgan, P B Shalen, Valuations, trees, and degenerations of hyperbolic structures, I, Ann. of Math. 120 (1984) 401 | DOI

[17] A Y Ol’Shanskiĭ, On residualing homomorphisms and G–subgroups of hyperbolic groups, Internat. J. Algebra Comput. 3 (1993) 365 | DOI

[18] A Ould Houcine, Limit groups of equationally Noetherian groups, from: "Geometric group theory" (editors G N Arzhantseva, L Bartholdi, J Burillo, E Ventura), Birkhäuser (2007) 103 | DOI

[19] C Perin, Elementary embeddings in torsion-free hyperbolic groups, Ann. Sci. Éc. Norm. Supér. 44 (2011) 631

[20] C Reinfeldt, R Weidmann, Makanin–Razborov diagrams for hyperbolic groups, preprint (2014)

[21] V N Remeslennikov, ∃–free groups, Sibirsk. Mat. Zh. 30 (1989) 193

[22] M Sageev, CAT(0) cube complexes and groups, from: "Geometric group theory" (editors M Bestvina, M Sageev, K Vogtmann), IAS/Park City Math. Ser. 21, Amer. Math. Soc. (2014) 7

[23] P Scott, T Wall, Topological methods in group theory, from: "Homological group theory" (editor C T C Wall), London Math. Soc. Lecture Note Ser. 36, Cambridge Univ. Press (1979) 137 | DOI

[24] Z Sela, Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups, II, Geom. Funct. Anal. 7 (1997) 561 | DOI

[25] Z Sela, Diophantine geometry over groups, I : Makanin–Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. 93 (2001) 31 | DOI

[26] Z Sela, Diophantine geometry over groups, VI : The elementary theory of a free group, Geom. Funct. Anal. 16 (2006) 707 | DOI

[27] Z Sela, Diophantine geometry over groups, VII : The elementary theory of a hyperbolic group, Proc. Lond. Math. Soc. 99 (2009) 217 | DOI

[28] M Sykiotis, On subgroups of finite complexity in groups acting on trees, J. Pure Appl. Algebra 200 (2005) 1 | DOI

[29] W Szmielew, Elementary properties of Abelian groups, Fund. Math. 41 (1955) 203 | DOI

[30] D T Wise, The structure of groups with a quasiconvex hierarchy, preprint (2012)

Cité par Sources :