Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The following properties are preserved under elementary equivalence, among finitely generated groups: being hyperbolic (possibly with torsion), being hyperbolic and cubulable, and being a subgroup of a hyperbolic group. In other words, if a finitely generated group has the same first-order theory as a group possessing one of the previous properties, then enjoys that property as well.
André, Simon 1
@article{GT_2020_24_3_a0, author = {Andr\'e, Simon}, title = {Hyperbolicity and cubulability are preserved under elementary equivalence}, journal = {Geometry & topology}, pages = {1075--1147}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2020}, doi = {10.2140/gt.2020.24.1075}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1075/} }
TY - JOUR AU - André, Simon TI - Hyperbolicity and cubulability are preserved under elementary equivalence JO - Geometry & topology PY - 2020 SP - 1075 EP - 1147 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1075/ DO - 10.2140/gt.2020.24.1075 ID - GT_2020_24_3_a0 ER -
André, Simon. Hyperbolicity and cubulability are preserved under elementary equivalence. Geometry & topology, Tome 24 (2020) no. 3, pp. 1075-1147. doi : 10.2140/gt.2020.24.1075. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1075/
[1] The virtual Haken conjecture, Doc. Math. 18 (2013) 1045 | DOI
,[2] Residually free groups, Proc. London Math. Soc. 17 (1967) 402 | DOI
,[3] On generalised free products, Math. Z. 78 (1962) 423 | DOI
,[4] A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85 | DOI
, ,[5] Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1998) 145 | DOI
,[6] L’image d’un groupe dans un groupe hyperbolique, Comment. Math. Helv. 70 (1995) 267 | DOI
,[7] JSJ decompositions of groups, 395 (2017) | DOI
, ,[8] Finite index subgroups of graph products, Geom. Dedicata 135 (2008) 167 | DOI
,[9] Irreducible affine varieties over a free group, I : Irreducibility of quadratic equations and Nullstellensatz, J. Algebra 200 (1998) 472 | DOI
, ,[10] Elementary theory of free non-abelian groups, J. Algebra 302 (2006) 451 | DOI
, ,[11] On accessibility of groups, J. Pure Appl. Algebra 30 (1983) 39 | DOI
,[12] Model theory: an introduction, 217, Springer (2002) | DOI
,[13] Coherence, local quasiconvexity, and the perimeter of 2–complexes, Geom. Funct. Anal. 15 (2005) 859 | DOI
, ,[14] Locally quasiconvex small-cancellation groups, Trans. Amer. Math. Soc. 360 (2008) 237 | DOI
, ,[15] Graphes de groupes et groupes co-hopfiens, PhD thesis, Université Paul Sabatier – Toulouse III (2013)
,[16] Valuations, trees, and degenerations of hyperbolic structures, I, Ann. of Math. 120 (1984) 401 | DOI
, ,[17] On residualing homomorphisms and G–subgroups of hyperbolic groups, Internat. J. Algebra Comput. 3 (1993) 365 | DOI
,[18] Limit groups of equationally Noetherian groups, from: "Geometric group theory" (editors G N Arzhantseva, L Bartholdi, J Burillo, E Ventura), Birkhäuser (2007) 103 | DOI
,[19] Elementary embeddings in torsion-free hyperbolic groups, Ann. Sci. Éc. Norm. Supér. 44 (2011) 631
,[20] Makanin–Razborov diagrams for hyperbolic groups, preprint (2014)
, ,[21] ∃–free groups, Sibirsk. Mat. Zh. 30 (1989) 193
,[22] CAT(0) cube complexes and groups, from: "Geometric group theory" (editors M Bestvina, M Sageev, K Vogtmann), IAS/Park City Math. Ser. 21, Amer. Math. Soc. (2014) 7
,[23] Topological methods in group theory, from: "Homological group theory" (editor C T C Wall), London Math. Soc. Lecture Note Ser. 36, Cambridge Univ. Press (1979) 137 | DOI
, ,[24] Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups, II, Geom. Funct. Anal. 7 (1997) 561 | DOI
,[25] Diophantine geometry over groups, I : Makanin–Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. 93 (2001) 31 | DOI
,[26] Diophantine geometry over groups, VI : The elementary theory of a free group, Geom. Funct. Anal. 16 (2006) 707 | DOI
,[27] Diophantine geometry over groups, VII : The elementary theory of a hyperbolic group, Proc. Lond. Math. Soc. 99 (2009) 217 | DOI
,[28] On subgroups of finite complexity in groups acting on trees, J. Pure Appl. Algebra 200 (2005) 1 | DOI
,[29] Elementary properties of Abelian groups, Fund. Math. 41 (1955) 203 | DOI
,[30] The structure of groups with a quasiconvex hierarchy, preprint (2012)
,Cité par Sources :