Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We use a gradient flow to deform closed planar curves to curves with least variation of geodesic curvature in the sense. Given a smooth initial curve we show that the solution to the flow exists for all time and, provided the length of the evolving curve remains bounded, smoothly converges to a multiply covered circle. Moreover, we show that curves in any homotopy class with initially small enjoy a uniform length bound under the flow, yielding the convergence result in these cases.
Andrews, Ben 1 ; McCoy, James 2 ; Wheeler, Glen 3 ; Wheeler, Valentina-Mira 3
@article{GT_2020_24_2_a6, author = {Andrews, Ben and McCoy, James and Wheeler, Glen and Wheeler, Valentina-Mira}, title = {Closed ideal planar curves}, journal = {Geometry & topology}, pages = {1019--1049}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2020}, doi = {10.2140/gt.2020.24.1019}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1019/} }
TY - JOUR AU - Andrews, Ben AU - McCoy, James AU - Wheeler, Glen AU - Wheeler, Valentina-Mira TI - Closed ideal planar curves JO - Geometry & topology PY - 2020 SP - 1019 EP - 1049 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1019/ DO - 10.2140/gt.2020.24.1019 ID - GT_2020_24_2_a6 ER -
%0 Journal Article %A Andrews, Ben %A McCoy, James %A Wheeler, Glen %A Wheeler, Valentina-Mira %T Closed ideal planar curves %J Geometry & topology %D 2020 %P 1019-1049 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1019/ %R 10.2140/gt.2020.24.1019 %F GT_2020_24_2_a6
Andrews, Ben; McCoy, James; Wheeler, Glen; Wheeler, Valentina-Mira. Closed ideal planar curves. Geometry & topology, Tome 24 (2020) no. 2, pp. 1019-1049. doi : 10.2140/gt.2020.24.1019. http://geodesic.mathdoc.fr/articles/10.2140/gt.2020.24.1019/
[1] The mean curvature flow of submanifolds of high codimension, PhD thesis, Australian National University (2010)
,[2] On the Łojasiewicz–Simon gradient inequality, J. Funct. Anal. 201 (2003) 572 | DOI
,[3] The Łojasiewicz–Simon gradient inequality for open elastic curves, J. Differential Equations 261 (2016) 2168 | DOI
, , ,[4] Evolution of elastic curves in Rn : existence and computation, SIAM J. Math. Anal. 33 (2002) 1228 | DOI
, , ,[5] 3D Euler spirals for 3D curve completion, from: "Computational geometry", ACM (2010) 393 | DOI
, ,[6] Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20 (1984) 237 | DOI
,[7] The volume preserving mean curvature flow, J. Reine Angew. Math. 382 (1987) 35 | DOI
,[8] The surface area preserving mean curvature flow, Asian J. Math. 7 (2003) 7 | DOI
,[9] A sixth order curvature flow of plane curves with boundary conditions, from: "2017 MATRIX annals" (editors D R Wood, J de Gier, C E Praeger, T Tao), MATRIX Book Ser. 2, Springer (2019) 213 | DOI
, , ,[10] The polyharmonic heat flow of closed plane curves, J. Math. Anal. Appl. 439 (2016) 608 | DOI
, ,[11] Surface diffusion flow near spheres, Calc. Var. Partial Differential Equations 44 (2012) 131 | DOI
,[12] On the curve diffusion flow of closed plane curves, Ann. Mat. Pura Appl. 192 (2013) 931 | DOI
,Cité par Sources :